LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: arg1P ≤ 08 − arg2P ≤ 0−1 + arg5P ≤ 01 − arg5P ≤ 0arg6P ≤ 0arg6P ≤ 0arg7P ≤ 0arg7P ≤ 0arg1 ≤ 08 − arg2 ≤ 0−1 + arg5 ≤ 01 − arg5 ≤ 0arg6 ≤ 0arg6 ≤ 0arg7 ≤ 0arg7 ≤ 0
1: arg1P ≤ 010 − arg2P ≤ 0arg3P ≤ 0arg3P ≤ 0arg4P ≤ 0arg4P ≤ 0arg7P ≤ 0arg7P ≤ 0arg8P ≤ 0arg8P ≤ 0arg9P ≤ 0arg9P ≤ 0−1 + arg17P ≤ 0arg18P ≤ 0arg21P ≤ 0arg1 ≤ 010 − arg2 ≤ 0arg3 ≤ 0arg3 ≤ 0arg4 ≤ 0arg4 ≤ 0arg7 ≤ 0arg7 ≤ 0arg8 ≤ 0arg8 ≤ 0arg9 ≤ 0arg9 ≤ 0−1 + arg17 ≤ 0arg18 ≤ 0arg21 ≤ 0
3: 8 − arg1P ≤ 01 − arg2P ≤ 08 − arg1 ≤ 01 − arg2 ≤ 0x36 ≤ 0x37 ≤ 0x38 ≤ 0
4: TRUE
5: 8 − arg1P ≤ 01 − arg2P ≤ 0arg5P ≤ 0arg5P ≤ 0arg7P ≤ 08 − arg1 ≤ 01 − arg2 ≤ 0arg5 ≤ 0arg5 ≤ 0arg7 ≤ 0x36 ≤ 0x37 ≤ 0x38 ≤ 0
6: 12 − arg1P ≤ 0arg3P ≤ 012 − arg1 ≤ 0arg3 ≤ 0
7: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
5 11 5: x38 + x38 ≤ 0x38x38 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x36 + x36 ≤ 0x36x36 ≤ 0x160 + x160 ≤ 0x160x160 ≤ 0x119 + x119 ≤ 0x119x119 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
6 18 6: x38 + x38 ≤ 0x38x38 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x36 + x36 ≤ 0x36x36 ≤ 0x160 + x160 ≤ 0x160x160 ≤ 0x119 + x119 ≤ 0x119x119 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 2, 3, 4, 7, 8, 10 using the following ranking functions, which are bounded by −21.

7: 0
4: 0
3: 0
5: 0
0: 0
1: 0
6: 0
7: −8
4: −9
3: −10
5: −11
5_var_snapshot: −11
5*: −11
0: −14
1: −15
6: −16
6_var_snapshot: −16
6*: −16
Hints:
12 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 14 5: x38 + x38 ≤ 0x38x38 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x36 + x36 ≤ 0x36x36 ≤ 0x160 + x160 ≤ 0x160x160 ≤ 0x119 + x119 ≤ 0x119x119 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 12 5_var_snapshot: x38 + x38 ≤ 0x38x38 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x36 + x36 ≤ 0x36x36 ≤ 0x160 + x160 ≤ 0x160x160 ≤ 0x119 + x119 ≤ 0x119x119 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 21 6: x38 + x38 ≤ 0x38x38 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x36 + x36 ≤ 0x36x36 ≤ 0x160 + x160 ≤ 0x160x160 ≤ 0x119 + x119 ≤ 0x119x119 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 19 6_var_snapshot: x38 + x38 ≤ 0x38x38 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x36 + x36 ≤ 0x36x36 ≤ 0x160 + x160 ≤ 0x160x160 ≤ 0x119 + x119 ≤ 0x119x119 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 SCC Decomposition

We consider subproblems for each of the 2 SCC(s) of the program graph.

8.1 SCC Subproblem 1/2

Here we consider the SCC { 5, 5_var_snapshot, 5* }.

8.1.1 Transition Removal

We remove transition 5 using the following ranking functions, which are bounded by 0.

5: −1 + 2⋅arg10 − 2⋅arg3 + arg6
5_var_snapshot: −2 + 2⋅arg10 − 2⋅arg3 + arg6
5*: 2⋅arg10 − 2⋅arg3 + arg6
Hints:
12 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0] ]
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0] ]

8.1.2 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by 0.

5: −1 + arg10arg3 + 2⋅arg6
5_var_snapshot: −2 + arg10arg3 + 2⋅arg6
5*: arg10arg3 + 2⋅arg6
Hints:
12 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] ]
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.1.3 Transition Removal

We remove transition 12 using the following ranking functions, which are bounded by −1.

5: 0
5_var_snapshot: −1
5*: 1
Hints:
12 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.1.4 Transition Removal

We remove transition 14 using the following ranking functions, which are bounded by 0.

5: 0
5_var_snapshot: 0
5*: arg2
Hints:
14 lexStrict[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.1.5 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

8.1.5.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 11.

8.1.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

8.2 SCC Subproblem 2/2

Here we consider the SCC { 6, 6_var_snapshot, 6* }.

8.2.1 Transition Removal

We remove transitions 19, 21, 9 using the following ranking functions, which are bounded by −1.

6: 1
6_var_snapshot: 0
6*: 2
Hints:
19 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.2.2 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

8.2.2.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 18.

8.2.2.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert