by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − nondet_13_1 + x_14_post ≤ 0 ∧ nondet_13_1 − x_14_post ≤ 0 ∧ nondet_13_0 − nondet_13_post ≤ 0 ∧ − nondet_13_0 + nondet_13_post ≤ 0 ∧ x_14_0 − x_14_post ≤ 0 ∧ − x_14_0 + x_14_post ≤ 0 ∧ − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_14_0 ≤ 0 ∧ result_12_post − temp0_15_0 ≤ 0 ∧ − result_12_post + temp0_15_0 ≤ 0 ∧ result_12_0 − result_12_post ≤ 0 ∧ − result_12_0 + result_12_post ≤ 0 ∧ − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0 | |
1 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_14_0 ≤ 0 ∧ 1 − x_14_0 + x_14_post ≤ 0 ∧ −1 + x_14_0 − x_14_post ≤ 0 ∧ 1 + x_14_post − x_20_0 ≤ 0 ∧ −1 − x_14_post + x_20_0 ≤ 0 ∧ 1 − x_20_0 ≤ 0 ∧ x_14_0 − x_14_post ≤ 0 ∧ − x_14_0 + x_14_post ≤ 0 ∧ − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0 | |
3 | 3 | 1: | − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0 | |
4 | 4 | 0: | − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | x_14_0 ≤ 0 |
3: | 1 − x_20_0 ≤ 0 |
4: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | x_14_0 ≤ 0 | ||
3 | (3) | 1 − x_20_0 ≤ 0 | ||
4 | (4) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
1 | 2 3 | |
3 | 3 1 | |
4 | 4 0 |
1 | 5 | : | − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.4: | 0 |
0: | 0 |
1: | 0 |
3: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −11 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − x_20_0 + x_20_0 ≤ 0 ∧ x_20_0 − x_20_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − temp0_15_0 + temp0_15_0 ≤ 0 ∧ temp0_15_0 − temp0_15_0 ≤ 0 ∧ − result_12_post + result_12_post ≤ 0 ∧ result_12_post − result_12_post ≤ 0 ∧ − result_12_0 + result_12_0 ≤ 0 ∧ result_12_0 − result_12_0 ≤ 0 ∧ − nondet_13_post + nondet_13_post ≤ 0 ∧ nondet_13_post − nondet_13_post ≤ 0 ∧ − nondet_13_1 + nondet_13_1 ≤ 0 ∧ nondet_13_1 − nondet_13_1 ≤ 0 ∧ − nondet_13_0 + nondet_13_0 ≤ 0 ∧ nondet_13_0 − nondet_13_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 1.: | −1 + 4⋅x_14_0 |
: | 1 + 4⋅x_14_0 |
: | −2 + 4⋅x_14_0 |
: | 4⋅x_14_0 |
6 | lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
8 | lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 6, using the following ranking functions, which are bounded by −3.
: | −2 |
: | 0 |
: | −3 |
: | −1 |
6 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 8 using the following ranking functions, which are bounded by −1.
: | −1 |
: | 0 |
: | 0 |
: | 0 |
8 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert