by T2Cert
| 0 | 0 | 1: | − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 0 | 1 | 1: | − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 2 | 2 | 0: | ___const_10_0 − i_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − ___const_10_0 + i_0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 3 | 4 | 2: | − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 1 | 5 | 4: | − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 5 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 | |
| 6 | 7 | 5: | − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 |
| 3 | 8 | : | − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0 |
We remove transitions , , , , , using the following ranking functions, which are bounded by −17.
| 6: | 0 |
| 5: | 0 |
| 2: | 0 |
| 3: | 0 |
| 0: | 0 |
| 1: | 0 |
| 4: | 0 |
| : | −7 |
| : | −8 |
| : | −9 |
| : | −9 |
| : | −9 |
| : | −9 |
| : | −10 |
| : | −11 |
| : | −12 |
| 9 | lexWeak[ [0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_10_0 + ___const_10_0 ≤ 0 ∧ ___const_10_0 − ___const_10_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 2.
| : | −1 + 4⋅___const_10_0 − 4⋅i_0 |
| : | 1 + 4⋅___const_10_0 − 4⋅i_0 |
| : | 4⋅___const_10_0 − 4⋅i_0 |
| : | 2 + 4⋅___const_10_0 − 4⋅i_0 |
| 9 | lexWeak[ [0, 0, 0, 4, 4, 0] ] |
| 11 | lexWeak[ [0, 0, 0, 4, 4, 0] ] |
| lexStrict[ [0, 0, 0, 0, 4, 0, 4, 4, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 4, 4, 0] ] |
We remove transitions 9, using the following ranking functions, which are bounded by −2.
| : | −2 |
| : | 0 |
| : | −1 |
| : | 1 |
| 9 | lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] |
We remove transition 11 using the following ranking functions, which are bounded by −1.
| : | 0 |
| : | −1 |
| : | 0 |
| : | 0 |
| 11 | lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert