LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
3 8 3: i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0___const_10_0 + ___const_10_0 ≤ 0___const_10_0___const_10_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 0, 1, 2, 5, 6, 7 using the following ranking functions, which are bounded by −17.

6: 0
5: 0
2: 0
3: 0
0: 0
1: 0
4: 0
6: −7
5: −8
2: −9
3: −9
3_var_snapshot: −9
3*: −9
0: −10
1: −11
4: −12
Hints:
9 lexWeak[ [0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexWeak[ [0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 11 3: i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0___const_10_0 + ___const_10_0 ≤ 0___const_10_0___const_10_0 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 9 3_var_snapshot: i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0___const_10_0 + ___const_10_0 ≤ 0___const_10_0___const_10_0 ≤ 0

5 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

5.1 SCC Subproblem 1/1

Here we consider the SCC { 2, 3, 3_var_snapshot, 3* }.

5.1.1 Transition Removal

We remove transition 3 using the following ranking functions, which are bounded by 2.

2: −1 + 4⋅___const_10_0 − 4⋅i_0
3: 1 + 4⋅___const_10_0 − 4⋅i_0
3_var_snapshot: 4⋅___const_10_0 − 4⋅i_0
3*: 2 + 4⋅___const_10_0 − 4⋅i_0
Hints:
9 lexWeak[ [0, 0, 0, 4, 4, 0] ]
11 lexWeak[ [0, 0, 0, 4, 4, 0] ]
3 lexStrict[ [0, 0, 0, 0, 4, 0, 4, 4, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0] ]
4 lexWeak[ [0, 0, 0, 4, 4, 0] ]

5.1.2 Transition Removal

We remove transitions 9, 4 using the following ranking functions, which are bounded by −2.

2: −2
3: 0
3_var_snapshot: −1
3*: 1
Hints:
9 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]
11 lexWeak[ [0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]

5.1.3 Transition Removal

We remove transition 11 using the following ranking functions, which are bounded by −1.

2: 0
3: −1
3_var_snapshot: 0
3*: 0
Hints:
11 lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ]

5.1.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

5.1.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 8.

5.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert