by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 − i_0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + i_0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
| 2 | 2 | 0: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 1 | 3 | 3: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 4 | 4 | 5: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 6 | 5 | 4: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 6 | 6 | 4: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 3 | 7 | 6: | 2 − j_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 3 | 8 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 7 | 9 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
| 8 | 10 | 7: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | 2 − i_0 ≤ 0 |
| 2: | TRUE |
| 3: | 2 − i_0 ≤ 0 |
| 4: | 2 − i_0 ≤ 0 ∧ 2 − j_0 ≤ 0 |
| 5: | 2 − i_0 ≤ 0 ∧ 2 − j_0 ≤ 0 |
| 6: | 2 − i_0 ≤ 0 ∧ 2 − j_0 ≤ 0 |
| 7: | TRUE |
| 8: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | 2 − i_0 ≤ 0 | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | 2 − i_0 ≤ 0 | ||
| 4 | (4) | 2 − i_0 ≤ 0 ∧ 2 − j_0 ≤ 0 | ||
| 5 | (5) | 2 − i_0 ≤ 0 ∧ 2 − j_0 ≤ 0 | ||
| 6 | (6) | 2 − i_0 ≤ 0 ∧ 2 − j_0 ≤ 0 | ||
| 7 | (7) | TRUE | ||
| 8 | (8) | TRUE |
| 0 | 0 1 | |
| 0 | 1 2 | |
| 1 | 3 3 | |
| 2 | 2 0 | |
| 3 | 7 6 | |
| 3 | 8 1 | |
| 4 | 4 5 | |
| 6 | 5 4 | |
| 6 | 6 4 | |
| 7 | 9 2 | |
| 8 | 10 7 |
| 1 | 11 | : | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
| 2 | 18 | : | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
We remove transitions , , , , , , using the following ranking functions, which are bounded by −21.
| 8: | 0 |
| 7: | 0 |
| 0: | 0 |
| 2: | 0 |
| 1: | 0 |
| 3: | 0 |
| 6: | 0 |
| 4: | 0 |
| 5: | 0 |
| : | −8 |
| : | −9 |
| : | −10 |
| : | −10 |
| : | −10 |
| : | −10 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −12 |
| : | −13 |
| : | −14 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
21 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by −4.
| : | 2 − 3⋅j_0 |
| : | −3⋅j_0 |
| : | 1 − 3⋅j_0 |
| : | 2 − 3⋅j_0 |
We remove transitions 12, 14, using the following ranking functions, which are bounded by −1.
| : | −1 + i_0 |
| : | −1 |
| : | 0 |
| : | i_0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by −6.
| : | −1 − 4⋅i_0 |
| : | 1 − 4⋅i_0 |
| : | −4⋅i_0 |
| : | 2 − 4⋅i_0 |
We remove transitions 19, using the following ranking functions, which are bounded by −2.
| : | −2 |
| : | 0 |
| : | −1 |
| : | 1 |
We remove transition 21 using the following ranking functions, which are bounded by 0.
| : | 0 |
| : | 0 |
| : | 0 |
| : | 1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert