by T2Cert
| 0 | 0 | 1: | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 2 | 1 | 3: | − i2_0 + size1_0 ≤ 0 ∧ − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 2 | 2 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i2_0 − size1_0 ≤ 0 ∧ −1 − i2_0 + i2_post ≤ 0 ∧ 1 + i2_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 | |
| 5 | 3 | 6: | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 6 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i2_0 + size1_0 ≤ 0 ∧ i2_post ≤ 0 ∧ − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 | |
| 6 | 5 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i2_0 − size1_0 ≤ 0 ∧ −1 − i2_0 + i2_post ≤ 0 ∧ 1 + i2_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 | |
| 4 | 6 | 2: | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 1 | 7 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i2_0 + size1_0 ≤ 0 ∧ i2_post ≤ 0 ∧ − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 | |
| 1 | 8 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i2_0 − size1_0 ≤ 0 ∧ −1 − i2_0 + i2_post ≤ 0 ∧ 1 + i2_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 | |
| 7 | 9 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ − size1_post + size77_post ≤ 0 ∧ size1_post − size77_post ≤ 0 ∧ size1010_post − size1_post ≤ 0 ∧ − size1010_post + size1_post ≤ 0 ∧ i2_post ≤ 0 ∧ − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ size1010_0 − size1010_post ≤ 0 ∧ − size1010_0 + size1010_post ≤ 0 ∧ size1_0 − size1_post ≤ 0 ∧ − size1_0 + size1_post ≤ 0 ∧ size77_0 − size77_post ≤ 0 ∧ − size77_0 + size77_post ≤ 0 ∧ tmp1111_0 − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_post ≤ 0 ∧ tmp88_0 − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_post ≤ 0 | |
| 8 | 10 | 7: | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
The following invariants are asserted.
| 0: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ −10 + size1_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 1: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ −10 + size1_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 2: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 3: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 4: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 5: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 6: | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 |
| 7: | TRUE |
| 8: | TRUE |
The invariants are proved as follows.
| 0 | (0) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ −10 + size1_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 1 | (1) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ −10 + size1_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 2 | (2) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 3 | (3) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 4 | (4) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 5 | (5) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 6 | (6) | −10 + size1010_post ≤ 0 ∧ −10 + size1_post ≤ 0 ∧ 10 − size1_post ≤ 0 ∧ −10 + size77_post ≤ 0 ∧ −10 + size1010_0 ≤ 0 ∧ 10 − size1_0 ≤ 0 ∧ −10 + size77_0 ≤ 0 | ||
| 7 | (7) | TRUE | ||
| 8 | (8) | TRUE |
| 0 | 0 1 | |
| 1 | 7 5 | |
| 1 | 8 0 | |
| 2 | 1 3 | |
| 2 | 2 4 | |
| 4 | 6 2 | |
| 5 | 3 6 | |
| 6 | 4 4 | |
| 6 | 5 5 | |
| 7 | 9 0 | |
| 8 | 10 7 |
| 0 | 11 | : | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
| 4 | 18 | : | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
| 5 | 25 | : | − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
We remove transitions , , , , using the following ranking functions, which are bounded by −21.
| 8: | 0 |
| 7: | 0 |
| 0: | 0 |
| 1: | 0 |
| 5: | 0 |
| 6: | 0 |
| 2: | 0 |
| 4: | 0 |
| 3: | 0 |
| : | −7 |
| : | −8 |
| : | −9 |
| : | −9 |
| : | −9 |
| : | −9 |
| : | −10 |
| : | −10 |
| : | −10 |
| : | −10 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −12 |
| 12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 26 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
21 : − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
28 : − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
26 : − tmp88_post + tmp88_post ≤ 0 ∧ tmp88_post − tmp88_post ≤ 0 ∧ − tmp88_0 + tmp88_0 ≤ 0 ∧ tmp88_0 − tmp88_0 ≤ 0 ∧ − tmp1111_post + tmp1111_post ≤ 0 ∧ tmp1111_post − tmp1111_post ≤ 0 ∧ − tmp1111_0 + tmp1111_0 ≤ 0 ∧ tmp1111_0 − tmp1111_0 ≤ 0 ∧ − size77_post + size77_post ≤ 0 ∧ size77_post − size77_post ≤ 0 ∧ − size77_0 + size77_0 ≤ 0 ∧ size77_0 − size77_0 ≤ 0 ∧ − size1_post + size1_post ≤ 0 ∧ size1_post − size1_post ≤ 0 ∧ − size1_0 + size1_0 ≤ 0 ∧ size1_0 − size1_0 ≤ 0 ∧ − size1010_post + size1010_post ≤ 0 ∧ size1010_post − size1010_post ≤ 0 ∧ − size1010_0 + size1010_0 ≤ 0 ∧ size1010_0 − size1010_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
We consider subproblems for each of the 3 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 2.
| : | −1 − 4⋅i2_0 + 4⋅size1_0 |
| : | 1 − 4⋅i2_0 + 4⋅size1_0 |
| : | −4⋅i2_0 + 4⋅size1_0 |
| : | 2 − 4⋅i2_0 + 4⋅size1_0 |
| 19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
| 21 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
We remove transitions 19, 21, using the following ranking functions, which are bounded by −11.
| : | −2⋅size1_post |
| : | 0 |
| : | − size1_post |
| : | 1 |
| 19 | lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 21 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 0.
| : | −1 − 4⋅i2_0 + 4⋅size1_0 |
| : | −3 − 4⋅i2_0 + 4⋅size1_0 |
| : | −2 − 4⋅i2_0 + 4⋅size1_0 |
| : | −4⋅i2_0 + 4⋅size1_0 |
| 26 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
| 28 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 26, 28, using the following ranking functions, which are bounded by −1.
| : | size1_0 |
| : | − size1_post |
| : | 0 |
| : | 2⋅size1_0 |
| 26 | lexStrict[ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 28 | lexStrict[ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by −280.
| : | 20 − 31⋅i2_0 |
| : | −31⋅i2_0 |
| : | 10 − 31⋅i2_0 |
| : | −31⋅i2_0 + 3⋅size1_0 |
| 12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31] ] |
| 14 | lexWeak[ [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 31, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 12, 14, using the following ranking functions, which are bounded by −11.
| : | 0 |
| : | −1 − size1_0 |
| : | − size1_0 |
| : | 1 |
| 12 | lexStrict[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 14 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert