by T2Cert
0 | 0 | 1: | − i_0 + nodecount_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_0 − nodecount_0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
3 | 2 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
3 | 3 | 1: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
5 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ edgecount_0 − i_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
5 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − edgecount_0 + i_0 ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
6 | 6 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
8 | 7 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ edgecount_0 − j_0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
8 | 8 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − edgecount_0 + j_0 ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
10 | 9 | 11: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
12 | 10 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_0 + nodecount_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
12 | 11 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_0 − nodecount_0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
13 | 12 | 14: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
14 | 13 | 10: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
15 | 14 | 13: | 1 − i_0 + source_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
15 | 15 | 13: | 1 + i_0 − source_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
15 | 16 | 14: | i_0 − source_0 ≤ 0 ∧ − i_0 + source_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
9 | 17 | 12: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
11 | 18 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_0 + nodecount_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
11 | 19 | 15: | 1 + i_0 − nodecount_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
7 | 20 | 8: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
4 | 21 | 5: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
2 | 22 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 | |
16 | 23 | 10: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ edgecount_0 − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ nodecount_0 − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_post ≤ 0 ∧ source_0 − source_post ≤ 0 ∧ − source_0 + source_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
17 | 24 | 16: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 |
The following invariants are asserted.
0: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
1: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
2: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
3: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
4: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
5: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
6: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
7: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
8: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
9: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
10: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
11: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
12: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
13: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
14: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
15: | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 |
16: | TRUE |
17: | TRUE |
The invariants are proved as follows.
0 | (0) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
1 | (1) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
2 | (2) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
3 | (3) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
4 | (4) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
5 | (5) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
6 | (6) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
7 | (7) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
8 | (8) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
9 | (9) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
10 | (10) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
11 | (11) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
12 | (12) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
13 | (13) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
14 | (14) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
15 | (15) | −13 + edgecount_post ≤ 0 ∧ 13 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −13 + edgecount_0 ≤ 0 ∧ 13 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 | ||
16 | (16) | TRUE | ||
17 | (17) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
2 | 22 0 | |
3 | 2 4 | |
3 | 3 1 | |
4 | 21 5 | |
5 | 4 2 | |
5 | 5 3 | |
6 | 6 7 | |
7 | 20 8 | |
8 | 7 9 | |
8 | 8 6 | |
9 | 17 12 | |
10 | 9 11 | |
11 | 18 9 | |
11 | 19 15 | |
12 | 10 4 | |
12 | 11 7 | |
13 | 12 14 | |
14 | 13 10 | |
15 | 14 13 | |
15 | 15 13 | |
15 | 16 14 | |
16 | 23 10 | |
17 | 24 16 |
2 | 25 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 |
4 | 32 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 |
7 | 39 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 |
9 | 46 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 |
10 | 53 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 |
We remove transitions
, , , , , , using the following ranking functions, which are bounded by −27.17: | 0 |
16: | 0 |
10: | 0 |
11: | 0 |
13: | 0 |
14: | 0 |
15: | 0 |
6: | 0 |
7: | 0 |
8: | 0 |
9: | 0 |
12: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
0: | 0 |
2: | 0 |
1: | 0 |
: | −8 |
: | −9 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −11 |
: | −11 |
: | −11 |
: | −11 |
: | −11 |
: | −11 |
: | −11 |
: | −11 |
: | −11 |
: | −14 |
: | −14 |
: | −14 |
: | −14 |
: | −14 |
: | −15 |
: | −15 |
: | −15 |
: | −15 |
: | −16 |
26 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
33 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
40 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
47 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
54 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
28 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
26 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
35 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
33 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
42 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
40 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
49 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
47 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
56 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
54 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
We consider subproblems for each of the 4 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −6⋅i_0 + 6⋅nodecount_0 − nodecount_post |
: | −1 − 6⋅i_0 + 6⋅nodecount_0 |
: | −10 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0 − nodecount_post |
: | −6⋅i_0 + 6⋅nodecount_0 |
26 | lexWeak[ [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0] ] |
28 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] ] |
We remove transitions 26, 28, using the following ranking functions, which are bounded by −1.
: | − nodecount_0 |
: | edgecount_0 |
: | 0 |
: | edgecount_0 + edgecount_post |
26 | lexStrict[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
28 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] , [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , , }.We remove transition
using the following ranking functions, which are bounded by −1143.: | −6⋅edgecount_0 − edgecount_post − 93⋅i_0 |
: | −93⋅i_0 |
: | −6⋅edgecount_0 − edgecount_post − 93⋅i_0 + 13⋅nodecount_post |
: | −6⋅edgecount_0 − 93⋅i_0 + 13⋅nodecount_post |
: | 79 − 6⋅edgecount_0 − 93⋅i_0 |
33 | lexWeak[ [0, 0, 13, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 0, 0, 6] ] |
35 | lexWeak[ [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 0, 0, 0] ] |
lexWeak[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] ] | |
lexStrict[ [0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 1, 0, 6] , [1, 0, 0, 13, 0, 0, 99, 0, 0, 0, 0, 0, 0, 0, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 1, 0, 6] ] |
We remove transitions 35, , using the following ranking functions, which are bounded by −71.
: | edgecount_post |
: | −5⋅edgecount_post |
: | − edgecount_post − 14⋅nodecount_post |
: | −14⋅nodecount_post |
: | 0 |
33 | lexWeak[ [5, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
35 | lexStrict[ [0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 33 using the following ranking functions, which are bounded by 4.
: | 0 |
: | nodecount_0 |
: | 0 |
: | 0 |
: | 0 |
33 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , , , , , , }.We remove transition
using the following ranking functions, which are bounded by 95.: | 65 − 21⋅i_0 + 21⋅nodecount_0 + nodecount_post |
: | 65 − 21⋅i_0 + 21⋅nodecount_0 + nodecount_post |
: | 5⋅edgecount_0 − 21⋅i_0 + 21⋅nodecount_0 + nodecount_post |
: | −5 − 21⋅i_0 + 21⋅nodecount_0 + 18⋅nodecount_post |
: | 75 − 21⋅i_0 + 21⋅nodecount_0 |
: | 5⋅edgecount_0 − 21⋅i_0 + 21⋅nodecount_0 + nodecount_post |
: | 65 − 21⋅i_0 + 21⋅nodecount_0 + nodecount_post |
: | −10 − 21⋅i_0 + 21⋅nodecount_0 + 18⋅nodecount_post |
: | −21⋅i_0 + 21⋅nodecount_0 + 18⋅nodecount_post |
40 | lexWeak[ [0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 5, 0] ] |
42 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0] ] |
47 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0] ] |
49 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 21, 0, 0, 0, 0, 21, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 17, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 21, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 21, 0, 0, 0, 0, 21, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 5, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −41.: | 4 − 8⋅edgecount_0 + 13⋅edgecount_post − 5⋅j_0 − 10⋅nodecount_post |
: | −61 + 6⋅edgecount_0 − 5⋅j_0 + nodecount_post |
: | 5⋅edgecount_0 − 5⋅j_0 − 9⋅nodecount_post |
: | 5⋅edgecount_0 + edgecount_post − 5⋅j_0 − 37⋅nodecount_post |
: | −5⋅j_0 − 24⋅nodecount_post |
: | −49 + 5⋅edgecount_0 − 5⋅j_0 + nodecount_post |
: | −5 + 6⋅edgecount_0 − 5⋅j_0 − 10⋅nodecount_post |
: | 5⋅edgecount_0 − 5⋅j_0 − 37⋅nodecount_post |
: | 123 + 5⋅edgecount_0 − 13⋅edgecount_post − 5⋅j_0 |
40 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 5, 0] ] |
42 | lexWeak[ [0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0] ] |
47 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 5, 0] ] |
49 | lexWeak[ [14, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 1, 0, 5, 0] ] |
lexWeak[ [0, 13, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0] ] | |
lexWeak[ [0, 13, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 13, 5, 0] ] | |
lexStrict[ [13, 0, 0, 1, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 13, 0, 0, 8] , [0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 13, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 5, 0] ] |
We remove transitions 40, 42, 47, 49, , , , using the following ranking functions, which are bounded by −79.
: | edgecount_post + 14⋅nodecount_0 + 2⋅nodecount_post |
: | −5 + 14⋅nodecount_0 + 2⋅nodecount_post |
: | 14⋅nodecount_0 − 13⋅nodecount_post |
: | −13⋅nodecount_post |
: | −7⋅edgecount_post |
: | 14⋅nodecount_0 |
: | 14⋅nodecount_0 + 2⋅nodecount_post |
: | −6⋅edgecount_0 |
: | −5⋅edgecount_0 + 14⋅nodecount_0 − 13⋅nodecount_post |
40 | lexStrict[ [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
42 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
47 | lexStrict[ [0, 0, 13, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] , [0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
49 | lexStrict[ [0, 0, 0, 0, 0, 0, 5, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 13, 0, 0, 0, 5, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 0, 0, 0, 5] , [0, 0, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 7, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0] , [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , , , , }.We remove transitions
, , using the following ranking functions, which are bounded by −28.: | 3 − 7⋅i_0 + 7⋅source_0 |
: | 1 − 7⋅i_0 + 7⋅source_0 |
: | −1 − 7⋅i_0 + 7⋅source_0 |
: | −2 − 7⋅i_0 + 7⋅source_0 |
: | −7⋅i_0 + 7⋅source_0 |
: | −24 + edgecount_0 + edgecount_post − 7⋅i_0 + 7⋅source_0 |
: | 4 − 7⋅i_0 + 7⋅source_0 |
54 | lexWeak[ [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 1, 0] ] |
56 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] ] |
lexWeak[ [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 54, 56, , , using the following ranking functions, which are bounded by −6.
: | 0 |
: | − edgecount_post − nodecount_0 |
: | 6⋅edgecount_post + nodecount_0 |
: | 6⋅edgecount_post |
: | 6⋅edgecount_post + 2⋅nodecount_0 |
: | − nodecount_0 |
: | 6⋅edgecount_post − 13⋅nodecount_0 |
54 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
56 | lexStrict[ [0, 6, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 6, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0] , [0, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 6, 0, 0, 0] , [0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by 12.: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | edgecount_0 |
: | 0 |
: | 0 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert