# LTS Termination Proof

by T2Cert

## Input

Integer Transition System
• Initial Location: 17
• Transitions: (pre-variables and post-variables)  0 0 1: − i_0 + nodecount_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 0 1 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_0 − nodecount_0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 3 2 4: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 5 3 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 5 4 1: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 7 5 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ edgecount_0 − i_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 7 6 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − edgecount_0 + i_0 ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 8 7 9: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 10 8 11: 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 11 9 12: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 12 10 8: 0 ≤ 0 ∧ 0 ≤ 0 ∧ edgecount_0 − j_0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 12 11 10: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − edgecount_0 + j_0 ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 9 12 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_0 + nodecount_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 9 13 11: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_0 − nodecount_0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 13 14 14: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 14 15 3: 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 6 16 7: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 15 17 13: 1 − i_0 + source_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 15 18 13: 1 + i_0 − source_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 15 19 14: i_0 − source_0 ≤ 0 ∧ − i_0 + source_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 4 20 8: 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_0 + nodecount_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 4 21 15: 1 + i_0 − nodecount_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 2 22 0: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 16 23 3: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ edgecount_0 − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ nodecount_0 − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_post ≤ 0 ∧ source_0 − source_post ≤ 0 ∧ − source_0 + source_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 17 24 16: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0

## Proof

The following invariants are asserted.

 0: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 1: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 2: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 3: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 4: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 5: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 6: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 7: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 8: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 9: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 10: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 11: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 12: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 13: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 14: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 15: −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 16: TRUE 17: TRUE

The invariants are proved as follows.

### IMPACT Invariant Proof

• nodes (location) invariant:  0 (0) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 1 (1) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 2 (2) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 3 (3) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 4 (4) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 5 (5) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 6 (6) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 7 (7) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 8 (8) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 9 (9) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 10 (10) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 11 (11) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 12 (12) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 13 (13) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 14 (14) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 15 (15) −6 + edgecount_post ≤ 0 ∧ 6 − edgecount_post ≤ 0 ∧ −5 + nodecount_post ≤ 0 ∧ 5 − nodecount_post ≤ 0 ∧ source_post ≤ 0 ∧ − source_post ≤ 0 ∧ −6 + edgecount_0 ≤ 0 ∧ 6 − edgecount_0 ≤ 0 ∧ −5 + nodecount_0 ≤ 0 ∧ 5 − nodecount_0 ≤ 0 ∧ − source_0 ≤ 0 16 (16) TRUE 17 (17) TRUE
• initial node: 17
• cover edges:
• transition edges:  0 0 1 0 1 2 2 22 0 3 2 4 4 20 8 4 21 15 5 3 6 5 4 1 6 16 7 7 5 2 7 6 5 8 7 9 9 12 6 9 13 11 10 8 11 11 9 12 12 10 8 12 11 10 13 14 14 14 15 3 15 17 13 15 18 13 15 19 14 16 23 3 17 24 16

### 2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 2 25 2: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 3 32 3: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 6 39 6: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 8 46 8: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0 11 53 11: − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − source_post + source_post ≤ 0 ∧ source_post − source_post ≤ 0 ∧ − source_0 + source_0 ≤ 0 ∧ source_0 − source_0 ≤ 0 ∧ − nodecount_post + nodecount_post ≤ 0 ∧ nodecount_post − nodecount_post ≤ 0 ∧ − nodecount_0 + nodecount_0 ≤ 0 ∧ nodecount_0 − nodecount_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − edgecount_post + edgecount_post ≤ 0 ∧ edgecount_post − edgecount_post ≤ 0 ∧ − edgecount_0 + edgecount_0 ≤ 0 ∧ edgecount_0 − edgecount_0 ≤ 0
and for every transition t, a duplicate t is considered.

### 3 Transition Removal

We remove transitions 0, 4, 5, 12, 20, 23, 24 using the following ranking functions, which are bounded by −27.

 17: 0 16: 0 3: 0 4: 0 13: 0 14: 0 15: 0 8: 0 9: 0 10: 0 11: 0 12: 0 5: 0 6: 0 7: 0 0: 0 2: 0 1: 0 17: −8 16: −9 3: −10 4: −10 13: −10 14: −10 15: −10 3_var_snapshot: −10 3*: −10 8: −11 9: −11 10: −11 11: −11 12: −11 8_var_snapshot: −11 8*: −11 11_var_snapshot: −11 11*: −11 5: −14 6: −14 7: −14 6_var_snapshot: −14 6*: −14 0: −15 2: −15 2_var_snapshot: −15 2*: −15 1: −16

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 28 2: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 26 2_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 35 3: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 33 3_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 42 6: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 40 6_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

8* 49 8: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

8 47 8_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

11* 56 11: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

11 54 11_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

### 14 SCC Decomposition

We consider subproblems for each of the 4 SCC(s) of the program graph.

### 14.1 SCC Subproblem 1/4

Here we consider the SCC { 0, 2, 2_var_snapshot, 2* }.

### 14.1.1 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by 0.

 0: −6⋅i_0 + 6⋅nodecount_0 − nodecount_post 2: −1 − 6⋅i_0 + 6⋅nodecount_0 2_var_snapshot: −3 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0 − nodecount_post 2*: −6⋅i_0 + 6⋅nodecount_0

### 14.1.2 Transition Removal

We remove transitions 26, 28, 22 using the following ranking functions, which are bounded by −1.

 0: − nodecount_0 2: edgecount_0 2_var_snapshot: 0 2*: edgecount_0 + edgecount_post

### 14.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 14.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 25.

### 14.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 14.2 SCC Subproblem 2/4

Here we consider the SCC { 5, 6, 7, 6_var_snapshot, 6* }.

### 14.2.1 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by −233.

 5: −6⋅edgecount_0 − edgecount_post − 44⋅i_0 6: −44⋅i_0 7: −6⋅edgecount_0 − edgecount_post − 44⋅i_0 + 6⋅nodecount_post 6_var_snapshot: −6⋅edgecount_0 − 44⋅i_0 + 6⋅nodecount_post 6*: 37 − 6⋅edgecount_0 − 44⋅i_0

### 14.2.2 Transition Removal

We remove transitions 42, 3, 16 using the following ranking functions, which are bounded by −37.

 5: edgecount_post 6: −6⋅nodecount_post 7: −6⋅edgecount_post − nodecount_post 6_var_snapshot: −6⋅edgecount_post 6*: 0

### 14.2.3 Transition Removal

We remove transition 40 using the following ranking functions, which are bounded by 4.

 5: 0 6: nodecount_0 7: 0 6_var_snapshot: 0 6*: 0

### 14.2.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 14.2.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 39.

### 14.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 14.3 SCC Subproblem 3/4

Here we consider the SCC { 8, 9, 10, 11, 12, 8_var_snapshot, 8*, 11_var_snapshot, 11* }.

### 14.3.1 Transition Removal

We remove transition 13 using the following ranking functions, which are bounded by 36.

 8: −67⋅i_0 + 67⋅nodecount_0 + nodecount_post 9: 30 − 10⋅edgecount_post − 67⋅i_0 + 67⋅nodecount_0 10: 10⋅edgecount_0 − 10⋅edgecount_post − 67⋅i_0 + 67⋅nodecount_0 − 12⋅nodecount_post 11: −10⋅edgecount_post − 67⋅i_0 + 67⋅nodecount_0 12: −67⋅i_0 + 67⋅nodecount_0 − 12⋅nodecount_post 8_var_snapshot: −67⋅i_0 + 67⋅nodecount_0 8*: 6 − 67⋅i_0 + 67⋅nodecount_0 11_var_snapshot: −67⋅i_0 + 67⋅nodecount_0 − 12⋅nodecount_post 11*: −10⋅edgecount_post − 67⋅i_0 + 67⋅nodecount_0

### 14.3.2 Transition Removal

We remove transition 11 using the following ranking functions, which are bounded by −80.

 8: edgecount_post − 15⋅j_0 − 5⋅nodecount_0 + 2⋅nodecount_post 9: 5 − edgecount_0 + edgecount_post − 15⋅j_0 − 5⋅nodecount_0 + nodecount_post 10: edgecount_0 − edgecount_post − 15⋅j_0 − 2⋅nodecount_post 11: −7 + edgecount_0 − 15⋅j_0 + nodecount_post 12: edgecount_0 − 15⋅j_0 − 2⋅nodecount_post 8_var_snapshot: edgecount_post − 15⋅j_0 − 5⋅nodecount_0 + nodecount_post 8*: 1 + edgecount_0 − 15⋅j_0 − 5⋅nodecount_0 + 2⋅nodecount_post 11_var_snapshot: −2 − 15⋅j_0 + nodecount_post 11*: edgecount_0 − edgecount_post − 15⋅j_0 + nodecount_post

### 14.3.3 Transition Removal

We remove transitions 47, 49, 54, 7, 8, 9, 10 using the following ranking functions, which are bounded by −121.

 8: −18⋅nodecount_post 9: −25⋅nodecount_post 10: 2⋅edgecount_post + nodecount_0 11: nodecount_0 12: 10⋅edgecount_post − 18⋅nodecount_post 8_var_snapshot: −20⋅edgecount_post 8*: −30 + 10⋅edgecount_post − 18⋅nodecount_post 11_var_snapshot: 0 11*: −6 + 2⋅edgecount_post + nodecount_0

### 14.3.4 Transition Removal

We remove transition 56 using the following ranking functions, which are bounded by 5.

 8: 0 9: 0 10: 0 11: 0 12: 0 8_var_snapshot: 0 8*: 0 11_var_snapshot: 0 11*: edgecount_post

### 14.3.5 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

### 14.3.5.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 46.

### 14.3.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 14.3.5.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 53.

### 14.3.5.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 14.4 SCC Subproblem 4/4

Here we consider the SCC { 3, 4, 13, 14, 15, 3_var_snapshot, 3* }.

### 14.4.1 Transition Removal

We remove transitions 18, 19, 21 using the following ranking functions, which are bounded by −48.

 3: 3 − 12⋅i_0 + 12⋅source_0 4: 1 − 12⋅i_0 + 12⋅source_0 13: − edgecount_post − 12⋅i_0 + 12⋅source_0 14: −1 − edgecount_post − 12⋅i_0 + 12⋅source_0 15: −12⋅i_0 + 12⋅source_0 3_var_snapshot: edgecount_0 + edgecount_post − 12⋅i_0 − 2⋅nodecount_0 + 12⋅source_0 3*: 10 − edgecount_post − 12⋅i_0 + 12⋅source_0

### 14.4.2 Transition Removal

We remove transitions 33, 35, 2, 14, 15 using the following ranking functions, which are bounded by −97.

 3: −60 − edgecount_post 4: −16⋅edgecount_0 − edgecount_post 13: 0 14: − edgecount_post 15: 1 3_var_snapshot: − edgecount_post − 18⋅nodecount_post 3*: −5⋅edgecount_0 − edgecount_post

### 14.4.3 Transition Removal

We remove transition 17 using the following ranking functions, which are bounded by 4.

 3: 0 4: 0 13: 0 14: 0 15: nodecount_post 3_var_snapshot: 0 3*: 0

### 14.4.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 14.4.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 32.

### 14.4.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0