LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
1: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
2: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
3: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
4: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
5: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 0−5 + nodecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
6: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 0−5 + nodecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
7: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
8: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
9: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
10: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
11: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
12: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
13: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 0−5 + nodecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
14: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 0−5 + nodecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
15: −9 + edgecount_post ≤ 09 − edgecount_post ≤ 0−5 + nodecount_post ≤ 05 − nodecount_post ≤ 0source_post ≤ 0source_post ≤ 0−9 + edgecount_0 ≤ 09 − edgecount_0 ≤ 0−5 + nodecount_0 ≤ 05 − nodecount_0 ≤ 0source_0 ≤ 0
16: TRUE
17: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
2 25 2: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0
4 32 4: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0
5 39 5: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0
9 46 9: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0
10 53 10: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 3, 5, 11, 19, 23, 24 using the following ranking functions, which are bounded by −27.

17: 0
16: 0
5: 0
6: 0
13: 0
14: 0
15: 0
8: 0
9: 0
10: 0
11: 0
12: 0
3: 0
4: 0
7: 0
0: 0
2: 0
1: 0
17: −8
16: −9
5: −10
6: −10
13: −10
14: −10
15: −10
5_var_snapshot: −10
5*: −10
8: −11
9: −11
12: −11
10: −11
11: −11
9_var_snapshot: −11
9*: −11
10_var_snapshot: −11
10*: −11
3: −14
4: −14
7: −14
4_var_snapshot: −14
4*: −14
0: −15
2: −15
2_var_snapshot: −15
2*: −15
1: −16

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 28 2: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 26 2_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 35 4: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 33 4_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 42 5: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 40 5_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

10 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

9* 49 9: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

11 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

9 47 9_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

12 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

10* 56 10: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

13 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

10 54 10_var_snapshot: y_post + y_post ≤ 0y_posty_post ≤ 0y_0 + y_0 ≤ 0y_0y_0 ≤ 0x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0source_post + source_post ≤ 0source_postsource_post ≤ 0source_0 + source_0 ≤ 0source_0source_0 ≤ 0nodecount_post + nodecount_post ≤ 0nodecount_postnodecount_post ≤ 0nodecount_0 + nodecount_0 ≤ 0nodecount_0nodecount_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0edgecount_post + edgecount_post ≤ 0edgecount_postedgecount_post ≤ 0edgecount_0 + edgecount_0 ≤ 0edgecount_0edgecount_0 ≤ 0

14 SCC Decomposition

We consider subproblems for each of the 4 SCC(s) of the program graph.

14.1 SCC Subproblem 1/4

Here we consider the SCC { 0, 2, 2_var_snapshot, 2* }.

14.1.1 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by 0.

0: −6⋅i_0 + 6⋅nodecount_0nodecount_post
2: −1 − 6⋅i_0 + 6⋅nodecount_0
2_var_snapshot: −6 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0nodecount_post
2*: −6⋅i_0 + 6⋅nodecount_0

14.1.2 Transition Removal

We remove transitions 26, 28, 22 using the following ranking functions, which are bounded by −1.

0: nodecount_0
2: edgecount_0
2_var_snapshot: 0
2*: edgecount_0 + edgecount_post

14.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

14.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 25.

14.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

14.2 SCC Subproblem 2/4

Here we consider the SCC { 3, 4, 7, 4_var_snapshot, 4* }.

14.2.1 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by −539.

3: −6⋅edgecount_0edgecount_post − 65⋅i_0
4: −65⋅i_0
7: −6⋅edgecount_0edgecount_post − 65⋅i_0 + 9⋅nodecount_post
4_var_snapshot: −6⋅edgecount_0 − 65⋅i_0 + 9⋅nodecount_post
4*: 55 − 6⋅edgecount_0 − 65⋅i_0

14.2.2 Transition Removal

We remove transitions 35, 2, 21 using the following ranking functions, which are bounded by −1.

3: edgecount_post + 2⋅nodecount_0
4: 2⋅nodecount_0nodecount_post
7: nodecount_0
4_var_snapshot: 0
4*: 2⋅nodecount_0

14.2.3 Transition Removal

We remove transition 33 using the following ranking functions, which are bounded by 4.

3: 0
4: nodecount_0
7: 0
4_var_snapshot: 0
4*: 0

14.2.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

14.2.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 32.

14.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

14.3 SCC Subproblem 3/4

Here we consider the SCC { 8, 9, 12, 10, 11, 9_var_snapshot, 9*, 10_var_snapshot, 10* }.

14.3.1 Transition Removal

We remove transition 12 using the following ranking functions, which are bounded by 24.

8: 9 + edgecount_0 − 6⋅i_0 + 6⋅nodecount_0
9: 9 + edgecount_0 − 6⋅i_0 + 6⋅nodecount_0
12: edgecount_0 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0
10: 8 + edgecount_0 − 6⋅i_0 + 6⋅nodecount_0 + nodecount_post
11: edgecount_post − 6⋅i_0 + 6⋅nodecount_0 + 2⋅nodecount_post
9_var_snapshot: edgecount_0 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0
9*: edgecount_0 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0
10_var_snapshot: 16 − 6⋅i_0 + 6⋅nodecount_0 + nodecount_post
10*: edgecount_0 + edgecount_post − 6⋅i_0 + 6⋅nodecount_0 + nodecount_post

14.3.2 Transition Removal

We remove transition 10 using the following ranking functions, which are bounded by −101.

8: 3 − 13⋅j_0
9: edgecount_post − 13⋅j_0 + nodecount_post
12: edgecount_0 − 13⋅j_0nodecount_post
10: −13⋅j_0
11: −10 − 13⋅j_0
9_var_snapshot: edgecount_0edgecount_post − 13⋅j_0 + nodecount_post
9*: 15 − 13⋅j_0
10_var_snapshot: edgecount_post − 13⋅j_0
10*: −1 + edgecount_0 − 13⋅j_0nodecount_post

14.3.3 Transition Removal

We remove transitions 47, 49, 54, 56, 7, 8, 9, 15 using the following ranking functions, which are bounded by −1.

8: 2⋅edgecount_0 + 4⋅nodecount_0 + nodecount_post
9: 2⋅edgecount_0edgecount_post + 4⋅nodecount_0
12: 4⋅nodecount_0nodecount_post
10: 4⋅nodecount_0 − 3⋅nodecount_post
11: edgecount_0
9_var_snapshot: 4⋅nodecount_0
9*: 2⋅edgecount_0 + 4⋅nodecount_0
10_var_snapshot: 0
10*: −10 + 4⋅nodecount_0

14.3.4 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

14.3.4.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 46.

14.3.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

14.3.4.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 53.

14.3.4.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

14.4 SCC Subproblem 4/4

Here we consider the SCC { 5, 6, 13, 14, 15, 5_var_snapshot, 5* }.

14.4.1 Transition Removal

We remove transitions 17, 18, 20 using the following ranking functions, which are bounded by 17.

5: −50 + edgecount_0 + 6⋅edgecount_post − 7⋅i_0 + 7⋅nodecount_0 + 7⋅source_0
6: 1 + 5⋅edgecount_0 − 7⋅i_0 + 7⋅source_0
13: edgecount_0 − 7⋅i_0 + 7⋅nodecount_0 + 7⋅source_0
14: −1 + edgecount_0 − 7⋅i_0 + 7⋅nodecount_0 + 7⋅source_0
15: 5⋅edgecount_0 − 7⋅i_0 + 7⋅source_0
5_var_snapshot: −3 + 5⋅edgecount_0 − 7⋅i_0 + nodecount_0 + 7⋅source_0
5*: −4 + edgecount_0 + edgecount_post − 7⋅i_0 + 7⋅nodecount_0 + 7⋅source_0

14.4.2 Transition Removal

We remove transitions 40, 42, 4, 13, 14 using the following ranking functions, which are bounded by −19.

5: edgecount_0
6: −1 − 2⋅edgecount_post
13: 2⋅nodecount_post
14: edgecount_0 + 2⋅nodecount_post
15: 3⋅nodecount_post
5_var_snapshot: −2⋅edgecount_post
5*: −5 − edgecount_0 + 2⋅nodecount_post

14.4.3 Transition Removal

We remove transition 16 using the following ranking functions, which are bounded by −1.

5: 0
6: 0
13: −1
14: 0
15: 0
5_var_snapshot: 0
5*: 0

14.4.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

14.4.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 39.

14.4.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert