by AProVE
l0 | 1 | l1: | x1 = _iHAT0 ∧ x2 = _jHAT0 ∧ x3 = _tmp5HAT0 ∧ x4 = _x3HAT0 ∧ x5 = _y4HAT0 ∧ x1 = _iHATpost ∧ x2 = _jHATpost ∧ x3 = _tmp5HATpost ∧ x4 = _x3HATpost ∧ x5 = _y4HATpost ∧ _y4HAT0 = _y4HATpost ∧ _x3HAT0 = _x3HATpost ∧ _tmp5HAT0 = _tmp5HATpost ∧ _jHAT0 = _jHATpost ∧ _iHAT0 = _iHATpost | |
l2 | 2 | l3: | x1 = _x ∧ x2 = _x1 ∧ x3 = _x2 ∧ x4 = _x3 ∧ x5 = _x4 ∧ x1 = _x5 ∧ x2 = _x6 ∧ x3 = _x7 ∧ x4 = _x8 ∧ x5 = _x9 ∧ _x4 = _x9 ∧ _x3 = _x8 ∧ _x2 = _x7 ∧ _x1 = _x6 ∧ _x = _x5 | |
l4 | 3 | l2: | x1 = _x10 ∧ x2 = _x11 ∧ x3 = _x12 ∧ x4 = _x13 ∧ x5 = _x14 ∧ x1 = _x15 ∧ x2 = _x16 ∧ x3 = _x17 ∧ x4 = _x18 ∧ x5 = _x19 ∧ _x14 = _x19 ∧ _x13 = _x18 ∧ _x12 = _x17 ∧ _x11 = _x16 ∧ _x10 = _x15 | |
l5 | 4 | l6: | x1 = _x20 ∧ x2 = _x21 ∧ x3 = _x22 ∧ x4 = _x23 ∧ x5 = _x24 ∧ x1 = _x25 ∧ x2 = _x26 ∧ x3 = _x27 ∧ x4 = _x28 ∧ x5 = _x29 ∧ _x24 = _x29 ∧ _x23 = _x28 ∧ _x22 = _x27 ∧ _x20 = _x25 ∧ _x26 = 1 + _x21 | |
l6 | 5 | l7: | x1 = _x30 ∧ x2 = _x31 ∧ x3 = _x32 ∧ x4 = _x33 ∧ x5 = _x34 ∧ x1 = _x35 ∧ x2 = _x36 ∧ x3 = _x37 ∧ x4 = _x38 ∧ x5 = _x39 ∧ _x34 = _x39 ∧ _x33 = _x38 ∧ _x32 = _x37 ∧ _x31 = _x36 ∧ _x30 = _x35 | |
l8 | 6 | l5: | x1 = _x40 ∧ x2 = _x41 ∧ x3 = _x42 ∧ x4 = _x43 ∧ x5 = _x44 ∧ x1 = _x45 ∧ x2 = _x46 ∧ x3 = _x47 ∧ x4 = _x48 ∧ x5 = _x49 ∧ _x41 = _x46 ∧ _x40 = _x45 ∧ _x47 = _x47 ∧ _x49 = 1 + _x41 ∧ _x48 = _x41 | |
l8 | 7 | l5: | x1 = _x50 ∧ x2 = _x51 ∧ x3 = _x52 ∧ x4 = _x53 ∧ x5 = _x54 ∧ x1 = _x55 ∧ x2 = _x56 ∧ x3 = _x57 ∧ x4 = _x58 ∧ x5 = _x59 ∧ _x54 = _x59 ∧ _x53 = _x58 ∧ _x52 = _x57 ∧ _x51 = _x56 ∧ _x50 = _x55 | |
l7 | 8 | l0: | x1 = _x60 ∧ x2 = _x61 ∧ x3 = _x62 ∧ x4 = _x63 ∧ x5 = _x64 ∧ x1 = _x65 ∧ x2 = _x66 ∧ x3 = _x67 ∧ x4 = _x68 ∧ x5 = _x69 ∧ _x64 = _x69 ∧ _x63 = _x68 ∧ _x62 = _x67 ∧ _x61 = _x66 ∧ _x65 = −1 + _x60 ∧ _x60 ≤ _x61 | |
l7 | 9 | l8: | x1 = _x70 ∧ x2 = _x71 ∧ x3 = _x72 ∧ x4 = _x73 ∧ x5 = _x74 ∧ x1 = _x75 ∧ x2 = _x76 ∧ x3 = _x77 ∧ x4 = _x78 ∧ x5 = _x79 ∧ _x74 = _x79 ∧ _x73 = _x78 ∧ _x72 = _x77 ∧ _x71 = _x76 ∧ _x70 = _x75 ∧ 1 + _x71 ≤ _x70 | |
l1 | 10 | l4: | x1 = _x80 ∧ x2 = _x81 ∧ x3 = _x82 ∧ x4 = _x83 ∧ x5 = _x84 ∧ x1 = _x85 ∧ x2 = _x86 ∧ x3 = _x87 ∧ x4 = _x88 ∧ x5 = _x89 ∧ _x84 = _x89 ∧ _x83 = _x88 ∧ _x82 = _x87 ∧ _x81 = _x86 ∧ _x80 = _x85 ∧ 1 + _x80 ≤ 0 | |
l1 | 11 | l6: | x1 = _x90 ∧ x2 = _x91 ∧ x3 = _x92 ∧ x4 = _x93 ∧ x5 = _x94 ∧ x1 = _x95 ∧ x2 = _x96 ∧ x3 = _x97 ∧ x4 = _x98 ∧ x5 = _x99 ∧ _x94 = _x99 ∧ _x93 = _x98 ∧ _x92 = _x97 ∧ _x91 = _x96 ∧ _x90 = _x95 ∧ 0 ≤ _x90 | |
l9 | 12 | l0: | x1 = _x100 ∧ x2 = _x101 ∧ x3 = _x102 ∧ x4 = _x103 ∧ x5 = _x104 ∧ x1 = _x105 ∧ x2 = _x106 ∧ x3 = _x107 ∧ x4 = _x108 ∧ x5 = _x109 ∧ _x104 = _x109 ∧ _x103 = _x108 ∧ _x102 = _x107 ∧ _x105 = 4 ∧ _x106 = 0 | |
l10 | 13 | l9: | x1 = _x110 ∧ x2 = _x111 ∧ x3 = _x112 ∧ x4 = _x113 ∧ x5 = _x114 ∧ x1 = _x115 ∧ x2 = _x116 ∧ x3 = _x117 ∧ x4 = _x118 ∧ x5 = _x119 ∧ _x114 = _x119 ∧ _x113 = _x118 ∧ _x112 = _x117 ∧ _x111 = _x116 ∧ _x110 = _x115 |
l5 | l5 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l4 | l4 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l7 | l7 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l6 | l6 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l10 | l10 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l8 | l8 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l1 | l1 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l0 | l0 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l2 | l2 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
l9 | l9 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 |
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | x1 − x2 |
: | −1 + x1 − x2 |
: | −1 + x1 − x2 |
: | −1 + x1 − x2 |
: | −2 + x1 − x2 |
: | −2 + x1 − x2 |
We remove transitions
, using the following ranking functions, which are bounded by 0.: | −1 |
: | −1 |
: | −1 |
: | −1 |
: | −1 |
: | 0 |
We remove transition
using the following ranking functions, which are bounded by 0.: | −1 |
: | −1 |
: | −1 |
: | −1 |
: | 0 |
We remove transition
using the following ranking functions, which are bounded by 0.: | x1 |
: | x1 |
: | −1 + x1 |
: | −1 + x1 |
We remove transitions
, , using the following ranking functions, which are bounded by 0.: | 0 |
: | −1 |
: | 1 |
: | 2 |
There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.