by T2Cert
0 | 0 | 1: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
2 | 1 | 3: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
4 | 2 | 2: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
4 | 3 | 2: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
5 | 4 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
6 | 5 | 7: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
8 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_0 + x3_post ≤ 0 ∧ j_0 − x3_post ≤ 0 ∧ −1 − j_0 + y4_post ≤ 0 ∧ 1 + j_0 − y4_post ≤ 0 ∧ tmp5_0 − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_post ≤ 0 ∧ x3_0 − x3_post ≤ 0 ∧ − x3_0 + x3_post ≤ 0 ∧ y4_0 − y4_post ≤ 0 ∧ − y4_0 + y4_post ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
8 | 7 | 5: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
7 | 8 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_0 − j_0 ≤ 0 ∧ 1 − i_0 + i_post ≤ 0 ∧ −1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
7 | 9 | 8: | 1 − i_0 + j_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
1 | 10 | 4: | 1 + i_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
1 | 11 | 6: | − i_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
9 | 12 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ −4 + i_post ≤ 0 ∧ 4 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 | |
10 | 13 | 9: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | 1 + i_0 ≤ 0 |
3: | 1 + i_0 ≤ 0 |
4: | 1 + i_0 ≤ 0 |
5: | TRUE |
6: | TRUE |
7: | TRUE |
8: | TRUE |
9: | TRUE |
10: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | 1 + i_0 ≤ 0 | ||
3 | (3) | 1 + i_0 ≤ 0 | ||
4 | (4) | 1 + i_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE | ||
7 | (7) | TRUE | ||
8 | (8) | TRUE | ||
9 | (9) | TRUE | ||
10 | (10) | TRUE |
0 | 0 1 | |
1 | 10 4 | |
1 | 11 6 | |
2 | 1 3 | |
4 | 2 2 | |
4 | 3 2 | |
5 | 4 6 | |
6 | 5 7 | |
7 | 8 0 | |
7 | 9 8 | |
8 | 6 5 | |
8 | 7 5 | |
9 | 12 0 | |
10 | 13 9 |
0 | 14 | : | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
6 | 21 | : | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
We remove transitions
, , , , , using the following ranking functions, which are bounded by −19.10: | 0 |
9: | 0 |
0: | 0 |
1: | 0 |
5: | 0 |
6: | 0 |
7: | 0 |
8: | 0 |
4: | 0 |
2: | 0 |
3: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −12 |
: | −13 |
: | −14 |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , , , , }.We remove transition
using the following ranking functions, which are bounded by −1.: | 2 + 5⋅i_0 |
: | 5⋅i_0 |
: | −1 + 5⋅i_0 |
: | −1 + 5⋅i_0 |
: | −1 + 5⋅i_0 |
: | −1 + 5⋅i_0 |
: | 1 + 5⋅i_0 |
: | 3 + 5⋅i_0 |
: | −1 + 5⋅i_0 |
: | −1 + 5⋅i_0 |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] |
22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
lexWeak[ [0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] , [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by 10.: | 9 + i_0 + 10⋅i_post − 11⋅j_0 |
: | 8 + i_0 + 10⋅i_post − 11⋅j_0 |
: | −8 + 11⋅i_0 − 11⋅j_0 |
: | 1 + 11⋅i_0 − 11⋅j_0 |
: | 11⋅i_0 − 11⋅j_0 |
: | −1 + 11⋅i_0 − 11⋅j_0 |
: | 8 + i_0 + 10⋅i_post − 11⋅j_0 |
: | 10 + i_0 + 10⋅i_post − 11⋅j_0 |
: | 11⋅i_0 − 11⋅j_0 |
: | 2 + 11⋅i_0 − 11⋅j_0 |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 1, 0] ] |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 1, 0] ] |
22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 1, 0] ] | |
lexWeak[ [0, 0, 0, 11, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | |
lexWeak[ [0, 0, 0, 11, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] , [11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 15, 17, 22, 24, , , , , , using the following ranking functions, which are bounded by −4.
: | −2 |
: | −4 |
: | 4 |
: | 2 |
: | 0 |
: | 5 |
: | −3 |
: | −1 |
: | 1 |
: | 3 |
15 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
22 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
24 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert