by T2Cert
| 0 | 0 | 1: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 2 | 1 | 3: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 4 | 2 | 2: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 4 | 3 | 2: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 5 | 4 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 6 | 5 | 7: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 8 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_0 + x3_post ≤ 0 ∧ j_0 − x3_post ≤ 0 ∧ −1 − j_0 + y4_post ≤ 0 ∧ 1 + j_0 − y4_post ≤ 0 ∧ tmp5_0 − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_post ≤ 0 ∧ x3_0 − x3_post ≤ 0 ∧ − x3_0 + x3_post ≤ 0 ∧ y4_0 − y4_post ≤ 0 ∧ − y4_0 + y4_post ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 8 | 7 | 5: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 7 | 8 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_0 − j_0 ≤ 0 ∧ 1 − i_0 + i_post ≤ 0 ∧ −1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
| 7 | 9 | 8: | 1 − i_0 + j_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 1 | 10 | 4: | 1 + i_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 1 | 11 | 6: | − i_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 9 | 12 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ −4 + i_post ≤ 0 ∧ 4 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 | |
| 10 | 13 | 9: | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | 1 + i_0 ≤ 0 | 
| 3: | 1 + i_0 ≤ 0 | 
| 4: | 1 + i_0 ≤ 0 | 
| 5: | TRUE | 
| 6: | TRUE | 
| 7: | TRUE | 
| 8: | TRUE | 
| 9: | TRUE | 
| 10: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | 1 + i_0 ≤ 0 | ||
| 3 | (3) | 1 + i_0 ≤ 0 | ||
| 4 | (4) | 1 + i_0 ≤ 0 | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | TRUE | ||
| 7 | (7) | TRUE | ||
| 8 | (8) | TRUE | ||
| 9 | (9) | TRUE | ||
| 10 | (10) | TRUE | 
| 0 | 0 1 | |
| 1 | 10 4 | |
| 1 | 11 6 | |
| 2 | 1 3 | |
| 4 | 2 2 | |
| 4 | 3 2 | |
| 5 | 4 6 | |
| 6 | 5 7 | |
| 7 | 8 0 | |
| 7 | 9 8 | |
| 8 | 6 5 | |
| 8 | 7 5 | |
| 9 | 12 0 | |
| 10 | 13 9 | 
| 0 | 14 | : | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | 
| 6 | 21 | : | − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | 
We remove transitions , , , , , using the following ranking functions, which are bounded by −19.
| 10: | 0 | 
| 9: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 5: | 0 | 
| 6: | 0 | 
| 7: | 0 | 
| 8: | 0 | 
| 4: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| : | −7 | 
| : | −8 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −12 | 
| : | −13 | 
| : | −14 | 
| 15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − x3_post + x3_post ≤ 0 ∧ x3_post − x3_post ≤ 0 ∧ − x3_0 + x3_0 ≤ 0 ∧ x3_0 − x3_0 ≤ 0 ∧ − tmp5_post + tmp5_post ≤ 0 ∧ tmp5_post − tmp5_post ≤ 0 ∧ − tmp5_0 + tmp5_0 ≤ 0 ∧ tmp5_0 − tmp5_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , , , , }.
We remove transition using the following ranking functions, which are bounded by −1.
| : | 2 + 5⋅i_0 | 
| : | 5⋅i_0 | 
| : | −1 + 5⋅i_0 | 
| : | −1 + 5⋅i_0 | 
| : | −1 + 5⋅i_0 | 
| : | −1 + 5⋅i_0 | 
| : | 1 + 5⋅i_0 | 
| : | 3 + 5⋅i_0 | 
| : | −1 + 5⋅i_0 | 
| : | −1 + 5⋅i_0 | 
| 15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | 
| 17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | 
| 22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | 
| 24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
| lexWeak[ [0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0] , [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition using the following ranking functions, which are bounded by 10.
| : | 9 + i_0 + 10⋅i_post − 11⋅j_0 | 
| : | 8 + i_0 + 10⋅i_post − 11⋅j_0 | 
| : | −8 + 11⋅i_0 − 11⋅j_0 | 
| : | 1 + 11⋅i_0 − 11⋅j_0 | 
| : | 11⋅i_0 − 11⋅j_0 | 
| : | −1 + 11⋅i_0 − 11⋅j_0 | 
| : | 8 + i_0 + 10⋅i_post − 11⋅j_0 | 
| : | 10 + i_0 + 10⋅i_post − 11⋅j_0 | 
| : | 11⋅i_0 − 11⋅j_0 | 
| : | 2 + 11⋅i_0 − 11⋅j_0 | 
| 15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 1, 0] ] | 
| 17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 1, 0] ] | 
| 22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | 
| 24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 1, 0] ] | |
| lexWeak[ [0, 0, 0, 11, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] ] | |
| lexWeak[ [0, 0, 0, 11, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 11, 0] , [11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transitions 15, 17, 22, 24, , , , , , using the following ranking functions, which are bounded by −4.
| : | −2 | 
| : | −4 | 
| : | 4 | 
| : | 2 | 
| : | 0 | 
| : | 5 | 
| : | −3 | 
| : | −1 | 
| : | 1 | 
| : | 3 | 
| 15 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 22 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 24 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert