by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_0 + x1_post ≤ 0 ∧ j_0 − x1_post ≤ 0 ∧ −1 − j_0 + y2_post ≤ 0 ∧ 1 + j_0 − y2_post ≤ 0 ∧ tmp3_0 − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ y2_0 − y2_post ≤ 0 ∧ − y2_0 + y2_post ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
0 | 1 | 1: | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
2 | 2 | 3: | 4 − j_0 ≤ 0 ∧ − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
2 | 3 | 0: | −3 + j_0 ≤ 0 ∧ − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
4 | 4 | 5: | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
6 | 5 | 2: | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
3 | 6 | 4: | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
3 | 7 | 4: | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
1 | 8 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 | |
7 | 9 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 | |
8 | 10 | 7: | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | TRUE |
3: | 4 − j_0 ≤ 0 |
4: | 4 − j_0 ≤ 0 |
5: | 4 − j_0 ≤ 0 |
6: | TRUE |
7: | TRUE |
8: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | TRUE | ||
3 | (3) | 4 − j_0 ≤ 0 | ||
4 | (4) | 4 − j_0 ≤ 0 | ||
5 | (5) | 4 − j_0 ≤ 0 | ||
6 | (6) | TRUE | ||
7 | (7) | TRUE | ||
8 | (8) | TRUE |
0 | 0 1 | |
0 | 1 1 | |
1 | 8 6 | |
2 | 2 3 | |
2 | 3 0 | |
3 | 6 4 | |
3 | 7 4 | |
4 | 4 5 | |
6 | 5 2 | |
7 | 9 6 | |
8 | 10 7 |
6 | 11 | : | − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 |
We remove transitions
, , , , , using the following ranking functions, which are bounded by −17.8: | 0 |
7: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
6: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −10 |
: | −11 |
: | −12 |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − y2_post + y2_post ≤ 0 ∧ y2_post − y2_post ≤ 0 ∧ − y2_0 + y2_0 ≤ 0 ∧ y2_0 − y2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , }.We remove transition
using the following ranking functions, which are bounded by −17.: | 1 − 6⋅j_0 |
: | −6⋅j_0 |
: | 2 − 6⋅j_0 |
: | 4 − 6⋅j_0 |
: | 3 − 6⋅j_0 |
: | 5 − 6⋅j_0 |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] ] |
14 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] , [6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6] ] | |
lexWeak[ [0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 12, 14, , , , using the following ranking functions, which are bounded by −4.
: | 1 |
: | 0 |
: | −4 |
: | −2 |
: | −3 |
: | −1 |
12 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
14 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert