by T2Cert
0 | 0 | 1: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 ≤ 0 ∧ rt_11_post − st_14_0 ≤ 0 ∧ − rt_11_post + st_14_0 ≤ 0 ∧ rt_11_0 − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_post ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
1 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ − nd_12_1 + rv_15_post ≤ 0 ∧ nd_12_1 − rv_15_post ≤ 0 ∧ − rv_15_post ≤ 0 ∧ rv_15_post ≤ 0 ∧ 1 − y_17_0 + y_17_post ≤ 0 ∧ −1 + y_17_0 − y_17_post ≤ 0 ∧ 2 − y_17_post ≤ 0 ∧ nd_12_0 − nd_12_post ≤ 0 ∧ − nd_12_0 + nd_12_post ≤ 0 ∧ rv_15_0 − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_post ≤ 0 ∧ st_16_0 − st_16_post ≤ 0 ∧ − st_16_0 + st_16_post ≤ 0 ∧ y_17_0 − y_17_post ≤ 0 ∧ − y_17_0 + y_17_post ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
3 | 3 | 1: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
1 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ − nd_12_1 + rv_15_post ≤ 0 ∧ nd_12_1 − rv_15_post ≤ 0 ∧ nd_12_0 − nd_12_post ≤ 0 ∧ − nd_12_0 + nd_12_post ≤ 0 ∧ rv_15_0 − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_post ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
4 | 5 | 5: | 1 − rv_15_0 ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
4 | 6 | 5: | 1 + rv_15_0 ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
5 | 7 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 + x_13_post ≤ 0 ∧ −1 + x_13_0 − x_13_post ≤ 0 ∧ − nd_12_1 + y_17_post ≤ 0 ∧ nd_12_1 − y_17_post ≤ 0 ∧ nd_12_0 − nd_12_post ≤ 0 ∧ − nd_12_0 + nd_12_post ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ y_17_0 − y_17_post ≤ 0 ∧ − y_17_0 + y_17_post ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
6 | 8 | 1: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
7 | 9 | 0: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | x_13_0 ≤ 0 |
3: | rv_15_post ≤ 0 ∧ − rv_15_post ≤ 0 ∧ 2 − y_17_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ 2 − y_17_0 ≤ 0 ∧ rv_15_0 ≤ 0 ∧ − rv_15_0 ≤ 0 |
4: | 1 − x_13_0 ≤ 0 |
5: | 1 − x_13_0 ≤ 0 |
6: | TRUE |
7: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | x_13_0 ≤ 0 | ||
3 | (3) | rv_15_post ≤ 0 ∧ − rv_15_post ≤ 0 ∧ 2 − y_17_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ 2 − y_17_0 ≤ 0 ∧ rv_15_0 ≤ 0 ∧ − rv_15_0 ≤ 0 | ||
4 | (4) | 1 − x_13_0 ≤ 0 | ||
5 | (5) | 1 − x_13_0 ≤ 0 | ||
6 | (6) | TRUE | ||
7 | (7) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
1 | 2 3 | |
1 | 4 4 | |
3 | 3 1 | |
4 | 5 5 | |
4 | 6 5 | |
5 | 7 6 | |
6 | 8 1 | |
7 | 9 0 |
1 | 10 | : | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.7: | 0 |
0: | 0 |
1: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
6: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −11 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , }.We remove transitions
, using the following ranking functions, which are bounded by 2.: | −1 + 4⋅x_13_0 |
: | −1 + 4⋅x_13_0 |
: | −1 + 4⋅x_13_0 |
: | −4 + 4⋅x_13_0 |
: | 4⋅x_13_0 |
: | −1 + 4⋅x_13_0 |
: | −1 + 4⋅x_13_0 |
We remove transitions
, using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | − x_13_0 |
: | 2⋅x_13_0 |
: | 1 |
: | 0 |
: | 0 |
We remove transition
using the following ranking functions, which are bounded by 0.: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 1 |
: | 0 |
: | 0 |
We remove transitions
, using the following ranking functions, which are bounded by 7.: | −2 + 4⋅y_17_0 |
: | 4⋅y_17_0 |
: | 0 |
: | 0 |
: | 0 |
: | −3 + 4⋅y_17_0 |
: | −1 + 4⋅y_17_0 |
We remove transitions 11, 13 using the following ranking functions, which are bounded by −2.
: | −1 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −2 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert