by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ b_16_0 − b_16_post ≤ 0 ∧ − b_16_0 + b_16_post ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 1 | 4 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_14_0 ≤ 0 ∧ x_14_0 ≤ 0 ∧ rt_11_post − st_15_0 ≤ 0 ∧ − rt_11_post + st_15_0 ≤ 0 ∧ rt_11_0 − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_post ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 1 | 5 | 6: | 1 − x_14_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 1 | 6 | 6: | 1 + x_14_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 6 | 7 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − x_14_0 + x_14_post ≤ 0 ∧ −1 + x_14_0 − x_14_post ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 − b_16_post ≤ 0 ∧ − b_16_0 + b_16_post ≤ 0 ∧ x_14_0 − x_14_post ≤ 0 ∧ − x_14_0 + x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 7 | 8 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_14_0 ≤ 0 ∧ x_14_0 ≤ 0 ∧ rt_11_post − st_15_0 ≤ 0 ∧ − rt_11_post + st_15_0 ≤ 0 ∧ rt_11_0 − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_post ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 7 | 9 | 8: | 1 − x_14_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 7 | 10 | 8: | 1 + x_14_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 8 | 11 | 9: | 2 − b_16_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 8 | 12 | 9: | b_16_0 ≤ 0 ∧ − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 9 | 13 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − x_14_0 + x_14_1 ≤ 0 ∧ 1 + x_14_0 − x_14_1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ x_14_1 + x_14_post ≤ 0 ∧ − x_14_1 − x_14_post ≤ 0 ∧ b_16_0 − b_16_post ≤ 0 ∧ − b_16_0 + b_16_post ≤ 0 ∧ x_14_0 − x_14_post ≤ 0 ∧ − x_14_0 + x_14_post ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 4 | 14 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_14_0 + x_14_post ≤ 0 ∧ − x_14_0 − x_14_post ≤ 0 ∧ x_14_0 − x_14_post ≤ 0 ∧ − x_14_0 + x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 | |
| 11 | 16 | 0: | − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| 4: | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| 5: | −1 + b_16_post ≤ 0 ∧ x_14_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 |
| 6: | −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| 7: | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| 8: | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| 9: | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 |
| 11: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 4 | (4) | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 5 | (5) | −1 + b_16_post ≤ 0 ∧ x_14_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 | ||
| 6 | (6) | −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 7 | (7) | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 8 | (8) | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 9 | (9) | b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 | ||
| 11 | (11) | TRUE |
| 0 | 0 1 | |
| 1 | 4 5 | |
| 1 | 5 6 | |
| 1 | 6 6 | |
| 4 | 14 7 | |
| 6 | 7 4 | |
| 7 | 8 5 | |
| 7 | 9 8 | |
| 7 | 10 8 | |
| 8 | 11 9 | |
| 8 | 12 9 | |
| 9 | 13 1 | |
| 11 | 16 0 |
| 1 | 17 | : | − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0 |
We remove transitions , , , using the following ranking functions, which are bounded by −13.
| 11: | 0 |
| 0: | 0 |
| 1: | 0 |
| 4: | 0 |
| 6: | 0 |
| 7: | 0 |
| 8: | 0 |
| 9: | 0 |
| 5: | 0 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −11 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
20 : − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − x_14_post + x_14_post ≤ 0 ∧ x_14_post − x_14_post ≤ 0 ∧ − x_14_1 + x_14_1 ≤ 0 ∧ x_14_1 − x_14_1 ≤ 0 ∧ − x_14_0 + x_14_0 ≤ 0 ∧ x_14_0 − x_14_0 ≤ 0 ∧ − st_15_0 + st_15_0 ≤ 0 ∧ st_15_0 − st_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − b_16_post + b_16_post ≤ 0 ∧ b_16_post − b_16_post ≤ 0 ∧ − b_16_0 + b_16_0 ≤ 0 ∧ b_16_0 − b_16_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , , }.
We remove transition using the following ranking functions, which are bounded by 7.
| : | −5 + 8⋅x_14_0 |
| : | 1 + 8⋅x_14_0 |
| : | −6⋅b_16_0 + 8⋅x_14_0 |
| : | −8⋅x_14_0 |
| : | −11 − 8⋅x_14_0 |
| : | −12 − 8⋅x_14_0 |
| : | −5⋅b_16_post + 8⋅x_14_0 |
| : | −4⋅b_16_0 + 8⋅x_14_0 |
We remove transition using the following ranking functions, which are bounded by 3.
| : | 2⋅b_16_post + 3⋅x_14_0 |
| : | 2 + 3⋅x_14_0 |
| : | 3⋅x_14_0 |
| : | 1 − 3⋅x_14_0 |
| : | −3⋅x_14_0 |
| : | −3⋅x_14_0 |
| : | b_16_0 + 3⋅x_14_0 |
| : | 2 − 2⋅b_16_0 + 2⋅b_16_post + 3⋅x_14_0 |
We remove transition using the following ranking functions, which are bounded by −1.
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
| 0: | TRUE |
| 1: | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 ∨ − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| 4: | − x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| 5: | −1 + b_16_post ≤ 0 ∧ x_14_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 |
| 6: | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 ∨ 1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| 7: | x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| 8: | 1 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 ∨ 1 + x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| 9: | 1 + x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 |
| 11: | TRUE |
| : | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 ∨ − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| : | − x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| : | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 ∨ 1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| : | x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| : | 1 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 |
| : | 1 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 |
| : | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 ∨ − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| : | 1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
The invariants are proved as follows.
| 0 | (11) | TRUE | ||
| 1 | (0) | TRUE | ||
| 2 | (1) | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 3 | (5) | −1 + b_16_post ≤ 0 ∧ x_14_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 | ||
| 4 | (6) | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 5 | (6) | 1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 6 | () | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 7 | () | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 20 | () | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 21 | () | − x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 22 | () | x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 23 | () | 1 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 32 | (4) | − x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 33 | (7) | x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 34 | (5) | −1 + b_16_post ≤ 0 ∧ x_14_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 | ||
| 35 | (8) | 1 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 36 | (8) | 1 + x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 ∧ − b_16_0 ≤ 0 | ||
| 37 | (9) | 1 + x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 | ||
| 38 | (9) | 1 + x_14_0 ≤ 0 ∧ b_16_post ≤ 0 ∧ − b_16_post ≤ 0 ∧ b_16_0 ≤ 0 | ||
| 39 | (1) | − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 40 | (5) | −1 + b_16_post ≤ 0 ∧ x_14_0 ≤ 0 ∧ −1 + b_16_0 ≤ 0 | ||
| 41 | (6) | 1 − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 42 | (6) | 1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 43 | () | − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 44 | () | − x_14_0 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 | ||
| 49 | () | 1 ≤ 0 ∧ −1 + b_16_post ≤ 0 ∧ 1 − b_16_post ≤ 0 ∧ −1 + b_16_0 ≤ 0 ∧ 1 − b_16_0 ≤ 0 |
| 34 | → 3 | |
| 37 | → 38 | |
| 40 | → 3 | |
| 41 | → 4 |
| 0 | 16 1 | |
| 1 | 0 2 | |
| 2 | 4 3 | |
| 2 | 5 4 | |
| 2 | 6 5 | |
| 2 | 17 6 | |
| 4 | 7 32 | |
| 6 | 18 7 | |
| 7 | 20 | |
| 20 | 21 | |
| 21 | 22 | |
| 22 | 23 | |
| 32 | 14 33 | |
| 33 | 8 34 | |
| 33 | 9 35 | |
| 33 | 10 36 | |
| 36 | 11 37 | |
| 36 | 12 38 | |
| 38 | 13 39 | |
| 39 | 4 40 | |
| 39 | 5 41 | |
| 39 | 6 42 | |
| 39 | 17 43 | |
| 43 | 18 44 | |
| 44 | 49 |
We remove transition 18 using the following ranking functions, which are bounded by −10.
| : | −1 |
| : | −2 |
| : | −3 |
| : | −4 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −8 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert