by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 + x_post ≤ 0 ∧ −1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 | |
1 | 1 | 2: | −99 + x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
1 | 2 | 2: | 101 − x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
2 | 3 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −300 + x_post ≤ 0 ∧ 300 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 | |
4 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
0 | 6 | : | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.4: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , }.We remove transition
using the following ranking functions, which are bounded by 505.: | −2 + 5⋅x_0 |
: | 1 + 5⋅x_0 |
: | 5⋅x_0 |
: | −3 + 5⋅x_0 |
: | −1 + 5⋅x_0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
0: | 101 − x_0 ≤ 0 |
1: | 100 − x_0 ≤ 0 |
2: | 1 ≤ 0 ∨ 101 − x_0 ≤ 0 |
3: | TRUE |
4: | TRUE |
: | 101 − x_0 ≤ 0 |
: | 100 − x_0 ≤ 0 |
: | 1 ≤ 0 |
: | 101 − x_0 ≤ 0 |
: | 1 ≤ 0 |
The invariants are proved as follows.
0 | (4) | TRUE | ||
1 | (3) | TRUE | ||
2 | (0) | 101 − x_0 ≤ 0 | ||
3 | (1) | 100 − x_0 ≤ 0 | ||
4 | ( | )101 − x_0 ≤ 0 | ||
5 | ( | )101 − x_0 ≤ 0 | ||
10 | (2) | 1 ≤ 0 | ||
11 | (2) | 101 − x_0 ≤ 0 | ||
12 | (0) | 101 − x_0 ≤ 0 | ||
17 | ( | )100 − x_0 ≤ 0 | ||
18 | ( | )1 ≤ 0 |
12 | → 2 |
0 | 5 1 | |
1 | 4 2 | |
2 | 0 3 | |
2 | 6 4 | |
3 | 1 10 | |
3 | 2 11 | |
4 | 7 5 | |
5 | 17 | |
11 | 3 12 | |
17 | 18 |
We remove transition 7 using the following ranking functions, which are bounded by −7.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
: | −5 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert