LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
2 5 2: j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0___const_20_0 + ___const_20_0 ≤ 0___const_20_0___const_20_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 0, 3, 4 using the following ranking functions, which are bounded by −13.

4: 0
3: 0
0: 0
2: 0
1: 0
4: −5
3: −6
0: −7
2: −7
2_var_snapshot: −7
2*: −7
1: −8

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 8 2: j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0___const_20_0 + ___const_20_0 ≤ 0___const_20_0___const_20_0 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 6 2_var_snapshot: j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0___const_20_0 + ___const_20_0 ≤ 0___const_20_0___const_20_0 ≤ 0

5 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

5.1 SCC Subproblem 1/1

Here we consider the SCC { 0, 2, 2_var_snapshot, 2* }.

5.1.1 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by 7.

0: 5 + 3⋅___const_20_0 − 3⋅j_0
2: 1 + 3⋅___const_20_0 − 3⋅j_0
2_var_snapshot: 3⋅___const_20_0 − 3⋅j_0
2*: 2 + 3⋅___const_20_0 − 3⋅j_0

5.1.2 Transition Removal

We remove transitions 6, 8, 2 using the following ranking functions, which are bounded by −1.

0: −1
2: 1
2_var_snapshot: 0
2*: 2

5.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

5.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 5.

5.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert