by T2Cert
0 | 0 | 1: | 20 − j_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
0 | 1 | 2: | −19 + j_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −2 − j_0 + j_post ≤ 0 ∧ 2 + j_0 − j_post ≤ 0 ∧ −2 + i_post − j_post ≤ 0 ∧ 2 − i_post + j_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 | |
3 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
4 | 4 | 3: | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | 20 − j_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
4: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | 20 − j_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE | ||
4 | (4) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
2 | 2 0 | |
3 | 3 2 | |
4 | 4 3 |
2 | 5 | : | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.4: | 0 |
3: | 0 |
0: | 0 |
2: | 0 |
1: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −8 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −54.: | 4 − 3⋅j_0 |
: | 2 − 3⋅j_0 |
: | −3⋅j_0 |
: | 2 − 3⋅j_0 |
We remove transitions 6, 8, using the following ranking functions, which are bounded by −3.
: | −3 |
: | −1 |
: | −2 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert