# LTS Termination Proof

by T2Cert

## Input

Integer Transition System
• Initial Location: 4
• Transitions: (pre-variables and post-variables)  0 0 1: 20 − j_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 0 1 2: −19 + j_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 2 2 0: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −2 − j_0 + j_post ≤ 0 ∧ 2 + j_0 − j_post ≤ 0 ∧ −2 + i_post − j_post ≤ 0 ∧ 2 − i_post + j_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 3 3 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 4 4 3: − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0

## Proof

The following invariants are asserted.

 0: TRUE 1: 20 − j_0 ≤ 0 2: TRUE 3: TRUE 4: TRUE

The invariants are proved as follows.

### IMPACT Invariant Proof

• nodes (location) invariant:  0 (0) TRUE 1 (1) 20 − j_0 ≤ 0 2 (2) TRUE 3 (3) TRUE 4 (4) TRUE
• initial node: 4
• cover edges:
• transition edges:  0 0 1 0 1 2 2 2 0 3 3 2 4 4 3

### 2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 2 5 2: − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
and for every transition t, a duplicate t is considered.

### 3 Transition Removal

We remove transitions 0, 3, 4 using the following ranking functions, which are bounded by −13.

 4: 0 3: 0 0: 0 2: 0 1: 0 4: −5 3: −6 0: −7 2: −7 2_var_snapshot: −7 2*: −7 1: −8

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 8 2: j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 6 2_var_snapshot: j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0

### 6 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

### 6.1 SCC Subproblem 1/1

Here we consider the SCC { 0, 2, 2_var_snapshot, 2* }.

### 6.1.1 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by −54.

 0: 4 − 3⋅j_0 2: 2 − 3⋅j_0 2_var_snapshot: −3⋅j_0 2*: 2 − 3⋅j_0

### 6.1.2 Transition Removal

We remove transitions 6, 8, 2 using the following ranking functions, which are bounded by −3.

 0: −3 2: −1 2_var_snapshot: −2 2*: 0

### 6.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 6.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 5.

### 6.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0