by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − ___const_100_0 + k_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ tmp___0_0 − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
0 | 1 | 2: | 1 + ___const_100_0 − k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
3 | 2 | 0: | 1 − k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
3 | 3 | 2: | k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
1 | 4 | 4: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
5 | 5 | 2: | i_0 − j_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
5 | 6 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i_0 + j_0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
7 | 7 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i_0 + i_post ≤ 0 ∧ −1 + i_0 − i_post ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
6 | 8 | 5: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
8 | 9 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
8 | 10 | 7: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
4 | 11 | 7: | i_0 − k_0 ≤ 0 ∧ − i_0 + k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
4 | 12 | 8: | 1 − i_0 + k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
4 | 13 | 8: | 1 + i_0 − k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
9 | 14 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ k_post − tmp_post ≤ 0 ∧ − k_post + tmp_post ≤ 0 ∧ k_0 − k_post ≤ 0 ∧ − k_0 + k_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
10 | 15 | 9: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 |
The following invariants are asserted.
0: | 1 − k_0 ≤ 0 |
1: | 1 − k_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
4: | 1 − k_0 ≤ 0 |
5: | 1 − k_0 ≤ 0 |
6: | 1 − k_0 ≤ 0 |
7: | 1 − k_0 ≤ 0 |
8: | 1 − k_0 ≤ 0 |
9: | TRUE |
10: | TRUE |
The invariants are proved as follows.
0 | (0) | 1 − k_0 ≤ 0 | ||
1 | (1) | 1 − k_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE | ||
4 | (4) | 1 − k_0 ≤ 0 | ||
5 | (5) | 1 − k_0 ≤ 0 | ||
6 | (6) | 1 − k_0 ≤ 0 | ||
7 | (7) | 1 − k_0 ≤ 0 | ||
8 | (8) | 1 − k_0 ≤ 0 | ||
9 | (9) | TRUE | ||
10 | (10) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
1 | 4 4 | |
3 | 2 0 | |
3 | 3 2 | |
4 | 11 7 | |
4 | 12 8 | |
4 | 13 8 | |
5 | 5 2 | |
5 | 6 6 | |
6 | 8 5 | |
7 | 7 6 | |
8 | 9 1 | |
8 | 10 7 | |
9 | 14 3 | |
10 | 15 9 |
1 | 16 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 |
6 | 23 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 |
We remove transitions
, , , , , , , , , using the following ranking functions, which are bounded by −23.10: | 0 |
9: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
4: | 0 |
8: | 0 |
7: | 0 |
5: | 0 |
6: | 0 |
2: | 0 |
: | −9 |
: | −10 |
: | −11 |
: | −12 |
: | −13 |
: | −13 |
: | −13 |
: | −13 |
: | −13 |
: | −14 |
: | −15 |
: | −15 |
: | −15 |
: | −15 |
: | −21 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
26 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 2.: | −1 + 4⋅i_0 − 4⋅j_0 |
: | 1 + 4⋅i_0 − 4⋅j_0 |
: | 4⋅i_0 − 4⋅j_0 |
: | 2 + 4⋅i_0 − 4⋅j_0 |
We remove transitions 24, 26, using the following ranking functions, which are bounded by −1.
: | −1 |
: | −1 + 2⋅k_0 |
: | 0 |
: | 2⋅k_0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , , }.We remove transition
using the following ranking functions, which are bounded by 4.: | 2 − 5⋅i_0 + 5⋅k_0 |
: | −5⋅i_0 + 5⋅k_0 |
: | −1 − 5⋅i_0 + 5⋅k_0 |
: | 1 − 5⋅i_0 + 5⋅k_0 |
: | 3 − 5⋅i_0 + 5⋅k_0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
0: | 1 − k_0 ≤ 0 |
1: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
4: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
5: | 1 − k_0 ≤ 0 |
6: | 1 − k_0 ≤ 0 |
7: | 1 − k_0 ≤ 0 |
8: | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ 1 + i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
9: | TRUE |
10: | TRUE |
: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
: | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 |
: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
: | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 |
The invariants are proved as follows.
0 | (10) | TRUE | ||
1 | (9) | TRUE | ||
2 | (3) | TRUE | ||
3 | (0) | 1 − k_0 ≤ 0 | ||
4 | (2) | TRUE | ||
5 | (1) | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
6 | (2) | TRUE | ||
7 | (4) | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
8 | ( | )−1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
9 | ( | )−1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
14 | (7) | 1 − k_0 ≤ 0 | ||
15 | (8) | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
16 | (8) | 1 + i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
17 | (1) | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
18 | (7) | 1 − k_0 ≤ 0 | ||
23 | ( | )−1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
24 | ( | )1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
32 | (6) | 1 − k_0 ≤ 0 | ||
33 | (5) | 1 − k_0 ≤ 0 | ||
35 | (2) | TRUE | ||
36 | (6) | 1 − k_0 ≤ 0 | ||
38 | (4) | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
39 | ( | )i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
40 | ( | )i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
45 | ( | )i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
46 | ( | )1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
51 | (7) | 1 − k_0 ≤ 0 | ||
52 | (8) | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
53 | (8) | 1 + i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 |
4 | → 6 | |
14 | → 18 | |
35 | → 6 | |
36 | → 32 | |
51 | → 18 | |
53 | → 16 |
0 | 15 1 | |
1 | 14 2 | |
2 | 2 3 | |
2 | 3 4 | |
3 | 0 5 | |
3 | 1 6 | |
5 | 4 7 | |
5 | 16 8 | |
7 | 11 14 | |
7 | 12 15 | |
7 | 13 16 | |
8 | 17 9 | |
9 | 23 | |
16 | 9 17 | |
16 | 10 18 | |
17 | 4 38 | |
17 | 16 39 | |
18 | 7 32 | |
23 | 24 | |
32 | 8 33 | |
33 | 5 35 | |
33 | 6 36 | |
38 | 11 51 | |
38 | 12 52 | |
38 | 13 53 | |
39 | 17 40 | |
40 | 45 | |
45 | 46 |
We remove transition 17 using the following ranking functions, which are bounded by −7.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
: | −5 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert