by T2Cert
0 | 0 | 1: | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
2 | 1 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 100 − i_0 ≤ 0 ∧ −100 + j_post ≤ 0 ∧ 100 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −99 + i_0 ≤ 0 ∧ − i_0 + y4_post ≤ 0 ∧ i_0 − y4_post ≤ 0 ∧ y4_0 − y4_post ≤ 0 ∧ − y4_0 + y4_post ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
4 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
5 | 4 | 2: | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
6 | 5 | 4: | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
7 | 6 | 8: | 200 − j_0 ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
7 | 7 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −199 + j_0 ≤ 0 ∧ − j_0 + y8_post ≤ 0 ∧ j_0 − y8_post ≤ 0 ∧ y8_0 − y8_post ≤ 0 ∧ − y8_0 + y8_post ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
3 | 8 | 7: | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
9 | 9 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
10 | 10 | 9: | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
1 | 11 | 10: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_0 + y6_post ≤ 0 ∧ i_0 − y6_post ≤ 0 ∧ y6_0 − y6_post ≤ 0 ∧ − y6_0 + y6_post ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
11 | 12 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
12 | 13 | 11: | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | TRUE |
3: | 100 − i_0 ≤ 0 |
4: | 100 − i_0 ≤ 0 |
5: | TRUE |
6: | 100 − i_0 ≤ 0 |
7: | 100 − i_0 ≤ 0 |
8: | 100 − i_0 ≤ 0 ∧ 200 − j_0 ≤ 0 |
9: | TRUE |
10: | TRUE |
11: | TRUE |
12: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | TRUE | ||
3 | (3) | 100 − i_0 ≤ 0 | ||
4 | (4) | 100 − i_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | 100 − i_0 ≤ 0 | ||
7 | (7) | 100 − i_0 ≤ 0 | ||
8 | (8) | 100 − i_0 ≤ 0 ∧ 200 − j_0 ≤ 0 | ||
9 | (9) | TRUE | ||
10 | (10) | TRUE | ||
11 | (11) | TRUE | ||
12 | (12) | TRUE |
0 | 0 1 | |
1 | 11 10 | |
2 | 1 3 | |
2 | 2 0 | |
3 | 8 7 | |
4 | 3 3 | |
5 | 4 2 | |
6 | 5 4 | |
7 | 6 8 | |
7 | 7 6 | |
9 | 9 5 | |
10 | 10 9 | |
11 | 12 5 | |
12 | 13 11 |
3 | 14 | : | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
5 | 21 | : | − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 |
We remove transitions
, , , using the following ranking functions, which are bounded by −17.12: | 0 |
11: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
5: | 0 |
9: | 0 |
10: | 0 |
3: | 0 |
4: | 0 |
6: | 0 |
7: | 0 |
8: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −10 |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − y8_post + y8_post ≤ 0 ∧ y8_post − y8_post ≤ 0 ∧ − y8_0 + y8_0 ≤ 0 ∧ y8_0 − y8_0 ≤ 0 ∧ − y6_post + y6_post ≤ 0 ∧ y6_post − y6_post ≤ 0 ∧ − y6_0 + y6_0 ≤ 0 ∧ y6_0 − y6_0 ≤ 0 ∧ − y4_post + y4_post ≤ 0 ∧ y4_post − y4_post ≤ 0 ∧ − y4_0 + y4_0 ≤ 0 ∧ y4_0 − y4_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , }.We remove transition
using the following ranking functions, which are bounded by −1196.: | 1 − 6⋅j_0 |
: | −3 − 6⋅j_0 |
: | −2 − 6⋅j_0 |
: | −1 − 6⋅j_0 |
: | −6⋅j_0 |
: | 2 − 6⋅j_0 |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] ] |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] , [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] ] |
We remove transitions 15, 17, , , using the following ranking functions, which are bounded by −2.
: | 0 |
: | 100 + i_0 |
: | 3⋅i_0 |
: | −2 |
: | −1 |
: | i_0 |
15 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
17 | lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] , [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , , , , , }.We remove transition
using the following ranking functions, which are bounded by −791.: | 1 − 8⋅i_0 |
: | −8⋅i_0 |
: | 2 − 8⋅i_0 |
: | 4 − 8⋅i_0 |
: | −2 − 8⋅i_0 |
: | −1 − 8⋅i_0 |
: | 3 − 8⋅i_0 |
: | 5 − 8⋅i_0 |
22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] , [0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] ] | |
lexWeak[ [0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] ] |
We remove transitions 22, 24, , , , , using the following ranking functions, which are bounded by −5.
: | 2 |
: | 1 |
: | −5 |
: | −3 |
: | −1 |
: | 0 |
: | −4 |
: | −2 |
22 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
24 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert