by T2Cert
0 | 0 | 1: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 | |
2 | 1 | 3: | − i13_0 + n12_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 | |
2 | 2 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i13_0 − n12_0 ≤ 0 ∧ −1 − i13_0 + i13_post ≤ 0 ∧ 1 + i13_0 − i13_post ≤ 0 ∧ i13_0 − i13_post ≤ 0 ∧ − i13_0 + i13_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 | |
4 | 3 | 2: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 | |
1 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i10_0 + n9_0 ≤ 0 ∧ n12_post − n_0 ≤ 0 ∧ − n12_post + n_0 ≤ 0 ∧ i13_post ≤ 0 ∧ − i13_post ≤ 0 ∧ i13_0 − i13_post ≤ 0 ∧ − i13_0 + i13_post ≤ 0 ∧ n12_0 − n12_post ≤ 0 ∧ − n12_0 + n12_post ≤ 0 ∧ tmp___0_0 − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 | |
1 | 5 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i10_0 − n9_0 ≤ 0 ∧ −1 − i10_0 + i10_post ≤ 0 ∧ 1 + i10_0 − i10_post ≤ 0 ∧ i10_0 − i10_post ≤ 0 ∧ − i10_0 + i10_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 | |
5 | 6 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ i10_post ≤ 0 ∧ − i10_post ≤ 0 ∧ i10_0 − i10_post ≤ 0 ∧ − i10_0 + i10_post ≤ 0 ∧ n9_0 − n9_post ≤ 0 ∧ − n9_0 + n9_post ≤ 0 ∧ n_0 − n_post ≤ 0 ∧ − n_0 + n_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 | |
6 | 7 | 5: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 |
0 | 8 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 |
4 | 15 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0 |
We remove transitions
, , , using the following ranking functions, which are bounded by −17.6: | 0 |
5: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
4: | 0 |
3: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −10 |
9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − n9_post + n9_post ≤ 0 ∧ n9_post − n9_post ≤ 0 ∧ − n9_0 + n9_0 ≤ 0 ∧ n9_0 − n9_0 ≤ 0 ∧ − n12_post + n12_post ≤ 0 ∧ n12_post − n12_post ≤ 0 ∧ − n12_0 + n12_0 ≤ 0 ∧ n12_0 − n12_0 ≤ 0 ∧ − i13_post + i13_post ≤ 0 ∧ i13_post − i13_post ≤ 0 ∧ − i13_0 + i13_0 ≤ 0 ∧ i13_0 − i13_0 ≤ 0 ∧ − i10_post + i10_post ≤ 0 ∧ i10_post − i10_post ≤ 0 ∧ − i10_0 + i10_0 ≤ 0 ∧ i10_0 − i10_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 2.: | −1 − 4⋅i13_0 + 4⋅n12_0 |
: | 1 − 4⋅i13_0 + 4⋅n12_0 |
: | −4⋅i13_0 + 4⋅n12_0 |
: | 2 − 4⋅i13_0 + 4⋅n12_0 |
16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
18 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
We remove transitions 18, using the following ranking functions, which are bounded by −3.
: | −3 |
: | −1 |
: | −2 |
: | 0 |
16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
18 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 16 using the following ranking functions, which are bounded by −1.
: | 0 |
: | 0 |
: | −1 |
: | 0 |
16 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 3.: | 2 − 4⋅i10_0 + 4⋅n9_0 |
: | −4⋅i10_0 + 4⋅n9_0 |
: | 1 − 4⋅i10_0 + 4⋅n9_0 |
: | 3 − 4⋅i10_0 + 4⋅n9_0 |
9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] | |
lexStrict[ [0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 11, using the following ranking functions, which are bounded by −3.
: | −1 |
: | −3 |
: | −2 |
: | 0 |
9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
11 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 9 using the following ranking functions, which are bounded by 0.
: | 1 |
: | 0 |
: | 0 |
: | 0 |
9 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert