by T2Cert
0 | 0 | 1: | 1 + i34_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i34_0 ≤ 0 ∧ 1 − i34_0 + i34_post ≤ 0 ∧ −1 + i34_0 − i34_post ≤ 0 ∧ i34_0 − i34_post ≤ 0 ∧ − i34_0 + i34_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
3 | 2 | 1: | 1 − i2_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
3 | 3 | 1: | 1 + i2_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i2_0 ≤ 0 ∧ − i2_0 ≤ 0 ∧ − ___const_999_0 + i34_post ≤ 0 ∧ ___const_999_0 − i34_post ≤ 0 ∧ i34_0 − i34_post ≤ 0 ∧ − i34_0 + i34_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
2 | 5 | 0: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
4 | 6 | 5: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
6 | 7 | 7: | 1 + i8_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
6 | 8 | 8: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i8_0 ≤ 0 ∧ 1 − i8_0 + i8_post ≤ 0 ∧ −1 + i8_0 − i8_post ≤ 0 ∧ i8_0 − i8_post ≤ 0 ∧ − i8_0 + i8_post ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
8 | 9 | 6: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
5 | 10 | 8: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i6_0 ≤ 0 ∧ − ___const_999_0 + i8_post ≤ 0 ∧ ___const_999_0 − i8_post ≤ 0 ∧ i8_0 − i8_post ≤ 0 ∧ − i8_0 + i8_post ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
5 | 11 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i6_0 ≤ 0 ∧ 1 − i6_0 + i6_post ≤ 0 ∧ −1 + i6_0 − i6_post ≤ 0 ∧ i6_0 − i6_post ≤ 0 ∧ − i6_0 + i6_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
1 | 12 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − ___const_999_0 + i6_post ≤ 0 ∧ ___const_999_0 − i6_post ≤ 0 ∧ i6_0 − i6_post ≤ 0 ∧ − i6_0 + i6_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
9 | 13 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
10 | 14 | 9: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 |
The following invariants are asserted.
0: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 |
1: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 |
2: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 |
3: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 |
4: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 |
5: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 |
6: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 |
7: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 ∧ 1 + i8_0 ≤ 0 |
8: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 |
9: | TRUE |
10: | TRUE |
The invariants are proved as follows.
0 | (0) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 | ||
1 | (1) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
2 | (2) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 | ||
3 | (3) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
4 | (4) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
5 | (5) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
6 | (6) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 | ||
7 | (7) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 ∧ 1 + i8_0 ≤ 0 | ||
8 | (8) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 | ||
9 | (9) | TRUE | ||
10 | (10) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
1 | 12 4 | |
2 | 5 0 | |
3 | 2 1 | |
3 | 3 1 | |
3 | 4 2 | |
4 | 6 5 | |
5 | 10 8 | |
5 | 11 4 | |
6 | 7 7 | |
6 | 8 8 | |
8 | 9 6 | |
9 | 13 3 | |
10 | 14 9 |
2 | 15 | : | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 |
4 | 22 | : | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 |
8 | 29 | : | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 |
We remove transitions
, , , , , , , , using the following ranking functions, which are bounded by −25.10: | 0 |
9: | 0 |
3: | 0 |
0: | 0 |
2: | 0 |
1: | 0 |
4: | 0 |
5: | 0 |
6: | 0 |
8: | 0 |
7: | 0 |
: | −9 |
: | −10 |
: | −11 |
: | −12 |
: | −12 |
: | −12 |
: | −12 |
: | −13 |
: | −14 |
: | −14 |
: | −14 |
: | −14 |
: | −15 |
: | −15 |
: | −15 |
: | −15 |
: | −16 |
16 | lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
23 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
30 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
25 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
23 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
32 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
30 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
We consider subproblems for each of the 3 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −4.: | − i2_0 − 2⋅i2_post + 4⋅i8_0 |
: | −1 + 4⋅i8_0 |
: | −2⋅i2_post + 4⋅i8_0 |
: | 4⋅i8_0 |
30 | lexWeak[ [0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0] ] |
32 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [2, 0, 1, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [2, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0] ] |
We remove transitions 30, 32, using the following ranking functions, which are bounded by −2.
: | −2⋅i2_0 |
: | 0 |
: | − i2_0 |
: | i2_post |
30 | lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
32 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | 3⋅i2_0 + 4⋅i6_0 |
: | i2_post + 4⋅i6_0 |
: | 2⋅i2_post + 4⋅i6_0 |
: | 3⋅i2_0 + i2_post + 4⋅i6_0 |
23 | lexWeak[ [2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] ] |
25 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0] ] |
lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 3, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 25, using the following ranking functions, which are bounded by −1.
: | 0 |
: | − i2_0 |
: | 0 |
: | 1 |
23 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
25 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 23 using the following ranking functions, which are bounded by −1.
: | 0 |
: | 0 |
: | − i2_0 |
: | 0 |
23 | lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transitions 16, 18, , using the following ranking functions, which are bounded by −2.
: | 1 |
: | − i2_post |
: | 0 |
: | 0 |
16 | lexStrict[ [1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
18 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert