by T2Cert
0 | 0 | 1: | − i5_0 + length4_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 ∧ − i5_post + i5_post ≤ 0 ∧ i5_post − i5_post ≤ 0 ∧ − i5_0 + i5_0 ≤ 0 ∧ i5_0 − i5_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i5_0 − length4_0 ≤ 0 ∧ −1 − i5_0 + i5_post ≤ 0 ∧ 1 + i5_0 − i5_post ≤ 0 ∧ i5_0 − i5_post ≤ 0 ∧ − i5_0 + i5_post ≤ 0 ∧ tmp___08_0 − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 | |
2 | 2 | 0: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 ∧ − i5_post + i5_post ≤ 0 ∧ i5_post − i5_post ≤ 0 ∧ − i5_0 + i5_0 ≤ 0 ∧ i5_0 − i5_0 ≤ 0 | |
3 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ s_post − tmp_post ≤ 0 ∧ − s_post + tmp_post ≤ 0 ∧ −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ i5_post ≤ 0 ∧ − i5_post ≤ 0 ∧ i5_0 − i5_post ≤ 0 ∧ − i5_0 + i5_post ≤ 0 ∧ length4_0 − length4_post ≤ 0 ∧ − length4_0 + length4_post ≤ 0 ∧ s_0 − s_post ≤ 0 ∧ − s_0 + s_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 | |
4 | 4 | 3: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 ∧ − i5_post + i5_post ≤ 0 ∧ i5_post − i5_post ≤ 0 ∧ − i5_0 + i5_0 ≤ 0 ∧ i5_0 − i5_0 ≤ 0 |
The following invariants are asserted.
0: | −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ −10 + length4_0 ≤ 0 ∧ 10 − length4_0 ≤ 0 |
1: | −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ 10 − length4_0 ≤ 0 |
2: | −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ −10 + length4_0 ≤ 0 ∧ 10 − length4_0 ≤ 0 |
3: | TRUE |
4: | TRUE |
The invariants are proved as follows.
0 | (0) | −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ −10 + length4_0 ≤ 0 ∧ 10 − length4_0 ≤ 0 | ||
1 | (1) | −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ 10 − length4_0 ≤ 0 | ||
2 | (2) | −10 + length4_post ≤ 0 ∧ 10 − length4_post ≤ 0 ∧ −10 + length4_0 ≤ 0 ∧ 10 − length4_0 ≤ 0 | ||
3 | (3) | TRUE | ||
4 | (4) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
2 | 2 0 | |
3 | 3 2 | |
4 | 4 3 |
2 | 5 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 ∧ − i5_post + i5_post ≤ 0 ∧ i5_post − i5_post ≤ 0 ∧ − i5_0 + i5_0 ≤ 0 ∧ i5_0 − i5_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.4: | 0 |
3: | 0 |
0: | 0 |
2: | 0 |
1: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −8 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 ∧ − i5_post + i5_post ≤ 0 ∧ i5_post − i5_post ≤ 0 ∧ − i5_0 + i5_0 ≤ 0 ∧ i5_0 − i5_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___08_post + tmp___08_post ≤ 0 ∧ tmp___08_post − tmp___08_post ≤ 0 ∧ − tmp___08_0 + tmp___08_0 ≤ 0 ∧ tmp___08_0 − tmp___08_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − s_post + s_post ≤ 0 ∧ s_post − s_post ≤ 0 ∧ − s_0 + s_0 ≤ 0 ∧ s_0 − s_0 ≤ 0 ∧ − length4_post + length4_post ≤ 0 ∧ length4_post − length4_post ≤ 0 ∧ − length4_0 + length4_0 ≤ 0 ∧ length4_0 − length4_0 ≤ 0 ∧ − i5_post + i5_post ≤ 0 ∧ i5_post − i5_post ≤ 0 ∧ − i5_0 + i5_0 ≤ 0 ∧ i5_0 − i5_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −128.: | −13⋅i5_0 − length4_0 |
: | 1 − 13⋅i5_0 |
: | −13⋅i5_0 |
: | 2 − 13⋅i5_0 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13] ] |
8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13] ] |
lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 13, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 14, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 13] ] |
We remove transitions 8, using the following ranking functions, which are bounded by −11.
: | − length4_0 − length4_post |
: | 0 |
: | − length4_0 |
: | length4_post |
6 | lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
8 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 6 using the following ranking functions, which are bounded by 9.
: | 0 |
: | length4_0 |
: | 0 |
: | 0 |
6 | lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert