LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
0 6 0: n_0 + n_0 ≤ 0n_0n_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0
1 13 1: n_0 + n_0 ≤ 0n_0n_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 4, 5 using the following ranking functions, which are bounded by −13.

4: 0
3: 0
0: 0
1: 0
2: 0
4: −4
3: −5
0: −6
2: −6
1: −6
0_var_snapshot: −6
0*: −6
1_var_snapshot: −6
1*: −6

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0* 9 0: n_0 + n_0 ≤ 0n_0n_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0 7 0_var_snapshot: n_0 + n_0 ≤ 0n_0n_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 16 1: n_0 + n_0 ≤ 0n_0n_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 14 1_var_snapshot: n_0 + n_0 ≤ 0n_0n_0 ≤ 0j_post + j_post ≤ 0j_postj_post ≤ 0j_0 + j_0 ≤ 0j_0j_0 ≤ 0i_post + i_post ≤ 0i_posti_post ≤ 0i_0 + i_0 ≤ 0i_0i_0 ≤ 0

7 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

7.1 SCC Subproblem 1/1

Here we consider the SCC { 0, 2, 1, 0_var_snapshot, 0*, 1_var_snapshot, 1* }.

7.1.1 Transition Removal

We remove transition 3 using the following ranking functions, which are bounded by 6.

0: −4 − 7⋅i_0 + 7⋅n_0
2: −4 − 7⋅i_0 + 7⋅n_0
1: −7⋅i_0 + 7⋅n_0
0_var_snapshot: −4 − 7⋅i_0 + 7⋅n_0
0*: −4 − 7⋅i_0 + 7⋅n_0
1_var_snapshot: −7⋅i_0 + 7⋅n_0
1*: 1 − 7⋅i_0 + 7⋅n_0

7.1.2 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by 1.

0: −1 + 3⋅i_0 − 3⋅j_0
2: 1 + 3⋅i_0 − 3⋅j_0
1: −6 + i_0 + 2⋅i_post − 3⋅j_0
0_var_snapshot: −1 + 3⋅i_0 − 3⋅j_0
0*: 3⋅i_0 − 3⋅j_0
1_var_snapshot: −7 + i_0 + 2⋅i_post − 3⋅j_0
1*: −5 + i_0 + 2⋅i_post − 3⋅j_0

7.1.3 Transition Removal

We remove transitions 9, 14, 16, 0, 2 using the following ranking functions, which are bounded by −6.

0: −2
2: 0
1: −5
0_var_snapshot: −3
0*: −1
1_var_snapshot: −6
1*: −4

7.1.4 Transition Removal

We remove transition 7 using the following ranking functions, which are bounded by −1.

0: 0
2: 0
1: 0
0_var_snapshot: −1
0*: 0
1_var_snapshot: 0
1*: 0

7.1.5 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

7.1.5.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 6.

7.1.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

7.1.5.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 13.

7.1.5.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert