LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 0x_13_1 ≤ 0x_13_1 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0
1: −17 + length_7_post ≤ 017 − length_7_post ≤ 0x_13_post ≤ 0x_13_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 0len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0x_13_0 ≤ 0x_13_0 ≤ 0
2: −17 + length_7_post ≤ 017 − length_7_post ≤ 0x_13_post ≤ 0x_13_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 0len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0x_13_0 ≤ 0x_13_0 ≤ 0
3: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0elem_16_post ≤ 0elem_16_post ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0elem_16_0 ≤ 0elem_16_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0
4: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0elem_16_post ≤ 0elem_16_post ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0elem_16_0 ≤ 0elem_16_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0
5: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0
6: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0
7: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0−1 + ____patmp1_post ≤ 01 − ____patmp1_post ≤ 0−1 + len_246_post ≤ 0−1 + ____patmp1_0 ≤ 01 − ____patmp1_0 ≤ 0−1 + len_246_0 ≤ 0
8: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0−1 + ____patmp1_post ≤ 01 − ____patmp1_post ≤ 0−1 + len_246_post ≤ 0−1 + ____patmp1_0 ≤ 01 − ____patmp1_0 ≤ 0−1 + len_246_0 ≤ 0
9: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0
10: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 0x_13_1 ≤ 0x_13_1 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0
11: TRUE
12: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0a_243_0 ≤ 0len_246_0 ≤ 0
13: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0a_243_0 ≤ 0len_246_0 ≤ 0
14: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0a_243_0 ≤ 0len_246_0 ≤ 0
15: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0a_243_0 ≤ 0len_246_0 ≤ 0
16: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0a_243_0 ≤ 0len_246_0 ≤ 0
17: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0a_128_0 ≤ 0a_243_0 ≤ 01 − len_246_0 ≤ 0
18: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0c_15_0 ≤ 0c_15_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0a_243_0 ≤ 0len_246_0 ≤ 0k_296_0 ≤ 0
19: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0k_296_0 ≤ 0
20: −17 + length_7_post ≤ 017 − length_7_post ≤ 0head_9_1 ≤ 0head_9_1 ≤ 0i_8_1 ≤ 0i_8_1 ≤ 01 − len_48_0 ≤ 0−17 + length_7_0 ≤ 017 − length_7_0 ≤ 0prev_17_post ≤ 0prev_17_post ≤ 0a_128_0 ≤ 0prev_17_0 ≤ 0prev_17_0 ≤ 0k_296_0 ≤ 0
21: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
0 30 0: y_80_0 + y_80_0 ≤ 0y_80_0y_80_0 ≤ 0y_309_0 + y_309_0 ≤ 0y_309_0y_309_0 ≤ 0y_259_0 + y_259_0 ≤ 0y_259_0y_259_0 ≤ 0y_158_0 + y_158_0 ≤ 0y_158_0y_158_0 ≤ 0y_14_post + y_14_post ≤ 0y_14_posty_14_post ≤ 0y_14_0 + y_14_0 ≤ 0y_14_0y_14_0 ≤ 0y_110_0 + y_110_0 ≤ 0y_110_0y_110_0 ≤ 0x_23_0 + x_23_0 ≤ 0x_23_0x_23_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_1 + x_13_1 ≤ 0x_13_1x_13_1 ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0tmp___0_11_post + tmp___0_11_post ≤ 0tmp___0_11_posttmp___0_11_post ≤ 0tmp___0_11_0 + tmp___0_11_0 ≤ 0tmp___0_11_0tmp___0_11_0 ≤ 0tmp_10_post + tmp_10_post ≤ 0tmp_10_posttmp_10_post ≤ 0tmp_10_0 + tmp_10_0 ≤ 0tmp_10_0tmp_10_0 ≤ 0prev_17_post + prev_17_post ≤ 0prev_17_postprev_17_post ≤ 0prev_17_0 + prev_17_0 ≤ 0prev_17_0prev_17_0 ≤ 0lt_21_post + lt_21_post ≤ 0lt_21_postlt_21_post ≤ 0lt_21_1 + lt_21_1 ≤ 0lt_21_1lt_21_1 ≤ 0lt_21_0 + lt_21_0 ≤ 0lt_21_0lt_21_0 ≤ 0lt_20_post + lt_20_post ≤ 0lt_20_postlt_20_post ≤ 0lt_20_1 + lt_20_1 ≤ 0lt_20_1lt_20_1 ≤ 0lt_20_0 + lt_20_0 ≤ 0lt_20_0lt_20_0 ≤ 0lt_19_post + lt_19_post ≤ 0lt_19_postlt_19_post ≤ 0lt_19_1 + lt_19_1 ≤ 0lt_19_1lt_19_1 ≤ 0lt_19_0 + lt_19_0 ≤ 0lt_19_0lt_19_0 ≤ 0lt_18_post + lt_18_post ≤ 0lt_18_postlt_18_post ≤ 0lt_18_1 + lt_18_1 ≤ 0lt_18_1lt_18_1 ≤ 0lt_18_0 + lt_18_0 ≤ 0lt_18_0lt_18_0 ≤ 0length_7_post + length_7_post ≤ 0length_7_postlength_7_post ≤ 0length_7_0 + length_7_0 ≤ 0length_7_0length_7_0 ≤ 0len_48_post + len_48_post ≤ 0len_48_postlen_48_post ≤ 0len_48_0 + len_48_0 ≤ 0len_48_0len_48_0 ≤ 0len_246_post + len_246_post ≤ 0len_246_postlen_246_post ≤ 0len_246_0 + len_246_0 ≤ 0len_246_0len_246_0 ≤ 0k_296_post + k_296_post ≤ 0k_296_postk_296_post ≤ 0k_296_0 + k_296_0 ≤ 0k_296_0k_296_0 ≤ 0i_8_post + i_8_post ≤ 0i_8_posti_8_post ≤ 0i_8_1 + i_8_1 ≤ 0i_8_1i_8_1 ≤ 0i_8_0 + i_8_0 ≤ 0i_8_0i_8_0 ≤ 0head_9_post + head_9_post ≤ 0head_9_posthead_9_post ≤ 0head_9_1 + head_9_1 ≤ 0head_9_1head_9_1 ≤ 0head_9_0 + head_9_0 ≤ 0head_9_0head_9_0 ≤ 0elem_16_post + elem_16_post ≤ 0elem_16_postelem_16_post ≤ 0elem_16_0 + elem_16_0 ≤ 0elem_16_0elem_16_0 ≤ 0cnt_276_post + cnt_276_post ≤ 0cnt_276_postcnt_276_post ≤ 0cnt_276_0 + cnt_276_0 ≤ 0cnt_276_0cnt_276_0 ≤ 0cnt_269_post + cnt_269_post ≤ 0cnt_269_postcnt_269_post ≤ 0cnt_269_0 + cnt_269_0 ≤ 0cnt_269_0cnt_269_0 ≤ 0cnt_139_post + cnt_139_post ≤ 0cnt_139_postcnt_139_post ≤ 0cnt_139_0 + cnt_139_0 ≤ 0cnt_139_0cnt_139_0 ≤ 0cnt_133_post + cnt_133_post ≤ 0cnt_133_postcnt_133_post ≤ 0cnt_133_0 + cnt_133_0 ≤ 0cnt_133_0cnt_133_0 ≤ 0c_15_post + c_15_post ≤ 0c_15_postc_15_post ≤ 0c_15_0 + c_15_0 ≤ 0c_15_0c_15_0 ≤ 0a_243_post + a_243_post ≤ 0a_243_posta_243_post ≤ 0a_243_0 + a_243_0 ≤ 0a_243_0a_243_0 ≤ 0a_128_post + a_128_post ≤ 0a_128_posta_128_post ≤ 0a_128_0 + a_128_0 ≤ 0a_128_0a_128_0 ≤ 0____patmp2_post + ____patmp2_post ≤ 0____patmp2_post____patmp2_post ≤ 0____patmp2_0 + ____patmp2_0 ≤ 0____patmp2_0____patmp2_0 ≤ 0____patmp1_post + ____patmp1_post ≤ 0____patmp1_post____patmp1_post ≤ 0____patmp1_0 + ____patmp1_0 ≤ 0____patmp1_0____patmp1_0 ≤ 0____cil_tmp6_12_post + ____cil_tmp6_12_post ≤ 0____cil_tmp6_12_post____cil_tmp6_12_post ≤ 0____cil_tmp6_12_0 + ____cil_tmp6_12_0 ≤ 0____cil_tmp6_12_0____cil_tmp6_12_0 ≤ 0Result_6_post + Result_6_post ≤ 0Result_6_postResult_6_post ≤ 0Result_6_0 + Result_6_0 ≤ 0Result_6_0Result_6_0 ≤ 0
9 37 9: y_80_0 + y_80_0 ≤ 0y_80_0y_80_0 ≤ 0y_309_0 + y_309_0 ≤ 0y_309_0y_309_0 ≤ 0y_259_0 + y_259_0 ≤ 0y_259_0y_259_0 ≤ 0y_158_0 + y_158_0 ≤ 0y_158_0y_158_0 ≤ 0y_14_post + y_14_post ≤ 0y_14_posty_14_post ≤ 0y_14_0 + y_14_0 ≤ 0y_14_0y_14_0 ≤ 0y_110_0 + y_110_0 ≤ 0y_110_0y_110_0 ≤ 0x_23_0 + x_23_0 ≤ 0x_23_0x_23_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_1 + x_13_1 ≤ 0x_13_1x_13_1 ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0tmp___0_11_post + tmp___0_11_post ≤ 0tmp___0_11_posttmp___0_11_post ≤ 0tmp___0_11_0 + tmp___0_11_0 ≤ 0tmp___0_11_0tmp___0_11_0 ≤ 0tmp_10_post + tmp_10_post ≤ 0tmp_10_posttmp_10_post ≤ 0tmp_10_0 + tmp_10_0 ≤ 0tmp_10_0tmp_10_0 ≤ 0prev_17_post + prev_17_post ≤ 0prev_17_postprev_17_post ≤ 0prev_17_0 + prev_17_0 ≤ 0prev_17_0prev_17_0 ≤ 0lt_21_post + lt_21_post ≤ 0lt_21_postlt_21_post ≤ 0lt_21_1 + lt_21_1 ≤ 0lt_21_1lt_21_1 ≤ 0lt_21_0 + lt_21_0 ≤ 0lt_21_0lt_21_0 ≤ 0lt_20_post + lt_20_post ≤ 0lt_20_postlt_20_post ≤ 0lt_20_1 + lt_20_1 ≤ 0lt_20_1lt_20_1 ≤ 0lt_20_0 + lt_20_0 ≤ 0lt_20_0lt_20_0 ≤ 0lt_19_post + lt_19_post ≤ 0lt_19_postlt_19_post ≤ 0lt_19_1 + lt_19_1 ≤ 0lt_19_1lt_19_1 ≤ 0lt_19_0 + lt_19_0 ≤ 0lt_19_0lt_19_0 ≤ 0lt_18_post + lt_18_post ≤ 0lt_18_postlt_18_post ≤ 0lt_18_1 + lt_18_1 ≤ 0lt_18_1lt_18_1 ≤ 0lt_18_0 + lt_18_0 ≤ 0lt_18_0lt_18_0 ≤ 0length_7_post + length_7_post ≤ 0length_7_postlength_7_post ≤ 0length_7_0 + length_7_0 ≤ 0length_7_0length_7_0 ≤ 0len_48_post + len_48_post ≤ 0len_48_postlen_48_post ≤ 0len_48_0 + len_48_0 ≤ 0len_48_0len_48_0 ≤ 0len_246_post + len_246_post ≤ 0len_246_postlen_246_post ≤ 0len_246_0 + len_246_0 ≤ 0len_246_0len_246_0 ≤ 0k_296_post + k_296_post ≤ 0k_296_postk_296_post ≤ 0k_296_0 + k_296_0 ≤ 0k_296_0k_296_0 ≤ 0i_8_post + i_8_post ≤ 0i_8_posti_8_post ≤ 0i_8_1 + i_8_1 ≤ 0i_8_1i_8_1 ≤ 0i_8_0 + i_8_0 ≤ 0i_8_0i_8_0 ≤ 0head_9_post + head_9_post ≤ 0head_9_posthead_9_post ≤ 0head_9_1 + head_9_1 ≤ 0head_9_1head_9_1 ≤ 0head_9_0 + head_9_0 ≤ 0head_9_0head_9_0 ≤ 0elem_16_post + elem_16_post ≤ 0elem_16_postelem_16_post ≤ 0elem_16_0 + elem_16_0 ≤ 0elem_16_0elem_16_0 ≤ 0cnt_276_post + cnt_276_post ≤ 0cnt_276_postcnt_276_post ≤ 0cnt_276_0 + cnt_276_0 ≤ 0cnt_276_0cnt_276_0 ≤ 0cnt_269_post + cnt_269_post ≤ 0cnt_269_postcnt_269_post ≤ 0cnt_269_0 + cnt_269_0 ≤ 0cnt_269_0cnt_269_0 ≤ 0cnt_139_post + cnt_139_post ≤ 0cnt_139_postcnt_139_post ≤ 0cnt_139_0 + cnt_139_0 ≤ 0cnt_139_0cnt_139_0 ≤ 0cnt_133_post + cnt_133_post ≤ 0cnt_133_postcnt_133_post ≤ 0cnt_133_0 + cnt_133_0 ≤ 0cnt_133_0cnt_133_0 ≤ 0c_15_post + c_15_post ≤ 0c_15_postc_15_post ≤ 0c_15_0 + c_15_0 ≤ 0c_15_0c_15_0 ≤ 0a_243_post + a_243_post ≤ 0a_243_posta_243_post ≤ 0a_243_0 + a_243_0 ≤ 0a_243_0a_243_0 ≤ 0a_128_post + a_128_post ≤ 0a_128_posta_128_post ≤ 0a_128_0 + a_128_0 ≤ 0a_128_0a_128_0 ≤ 0____patmp2_post + ____patmp2_post ≤ 0____patmp2_post____patmp2_post ≤ 0____patmp2_0 + ____patmp2_0 ≤ 0____patmp2_0____patmp2_0 ≤ 0____patmp1_post + ____patmp1_post ≤ 0____patmp1_post____patmp1_post ≤ 0____patmp1_0 + ____patmp1_0 ≤ 0____patmp1_0____patmp1_0 ≤ 0____cil_tmp6_12_post + ____cil_tmp6_12_post ≤ 0____cil_tmp6_12_post____cil_tmp6_12_post ≤ 0____cil_tmp6_12_0 + ____cil_tmp6_12_0 ≤ 0____cil_tmp6_12_0____cil_tmp6_12_0 ≤ 0Result_6_post + Result_6_post ≤ 0Result_6_postResult_6_post ≤ 0Result_6_0 + Result_6_0 ≤ 0Result_6_0Result_6_0 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 using the following ranking functions, which are bounded by −39.

21: 0
11: 0
0: 0
10: 0
1: 0
2: 0
3: 0
4: 0
5: 0
6: 0
7: 0
8: 0
9: 0
12: 0
13: 0
14: 0
19: 0
20: 0
18: 0
15: 0
16: 0
17: 0
21: −17
11: −18
0: −19
10: −19
0_var_snapshot: −19
0*: −19
1: −22
2: −23
3: −24
4: −25
5: −26
6: −27
7: −28
8: −29
9: −30
12: −30
13: −30
14: −30
19: −30
20: −30
9_var_snapshot: −30
9*: −30
18: −31
15: −35
16: −36
17: −37
Hints:
31 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
38 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
13 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
18 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
15 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
20 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
24 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0* 33 0: y_80_0 + y_80_0 ≤ 0y_80_0y_80_0 ≤ 0y_309_0 + y_309_0 ≤ 0y_309_0y_309_0 ≤ 0y_259_0 + y_259_0 ≤ 0y_259_0y_259_0 ≤ 0y_158_0 + y_158_0 ≤ 0y_158_0y_158_0 ≤ 0y_14_post + y_14_post ≤ 0y_14_posty_14_post ≤ 0y_14_0 + y_14_0 ≤ 0y_14_0y_14_0 ≤ 0y_110_0 + y_110_0 ≤ 0y_110_0y_110_0 ≤ 0x_23_0 + x_23_0 ≤ 0x_23_0x_23_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_1 + x_13_1 ≤ 0x_13_1x_13_1 ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0tmp___0_11_post + tmp___0_11_post ≤ 0tmp___0_11_posttmp___0_11_post ≤ 0tmp___0_11_0 + tmp___0_11_0 ≤ 0tmp___0_11_0tmp___0_11_0 ≤ 0tmp_10_post + tmp_10_post ≤ 0tmp_10_posttmp_10_post ≤ 0tmp_10_0 + tmp_10_0 ≤ 0tmp_10_0tmp_10_0 ≤ 0prev_17_post + prev_17_post ≤ 0prev_17_postprev_17_post ≤ 0prev_17_0 + prev_17_0 ≤ 0prev_17_0prev_17_0 ≤ 0lt_21_post + lt_21_post ≤ 0lt_21_postlt_21_post ≤ 0lt_21_1 + lt_21_1 ≤ 0lt_21_1lt_21_1 ≤ 0lt_21_0 + lt_21_0 ≤ 0lt_21_0lt_21_0 ≤ 0lt_20_post + lt_20_post ≤ 0lt_20_postlt_20_post ≤ 0lt_20_1 + lt_20_1 ≤ 0lt_20_1lt_20_1 ≤ 0lt_20_0 + lt_20_0 ≤ 0lt_20_0lt_20_0 ≤ 0lt_19_post + lt_19_post ≤ 0lt_19_postlt_19_post ≤ 0lt_19_1 + lt_19_1 ≤ 0lt_19_1lt_19_1 ≤ 0lt_19_0 + lt_19_0 ≤ 0lt_19_0lt_19_0 ≤ 0lt_18_post + lt_18_post ≤ 0lt_18_postlt_18_post ≤ 0lt_18_1 + lt_18_1 ≤ 0lt_18_1lt_18_1 ≤ 0lt_18_0 + lt_18_0 ≤ 0lt_18_0lt_18_0 ≤ 0length_7_post + length_7_post ≤ 0length_7_postlength_7_post ≤ 0length_7_0 + length_7_0 ≤ 0length_7_0length_7_0 ≤ 0len_48_post + len_48_post ≤ 0len_48_postlen_48_post ≤ 0len_48_0 + len_48_0 ≤ 0len_48_0len_48_0 ≤ 0len_246_post + len_246_post ≤ 0len_246_postlen_246_post ≤ 0len_246_0 + len_246_0 ≤ 0len_246_0len_246_0 ≤ 0k_296_post + k_296_post ≤ 0k_296_postk_296_post ≤ 0k_296_0 + k_296_0 ≤ 0k_296_0k_296_0 ≤ 0i_8_post + i_8_post ≤ 0i_8_posti_8_post ≤ 0i_8_1 + i_8_1 ≤ 0i_8_1i_8_1 ≤ 0i_8_0 + i_8_0 ≤ 0i_8_0i_8_0 ≤ 0head_9_post + head_9_post ≤ 0head_9_posthead_9_post ≤ 0head_9_1 + head_9_1 ≤ 0head_9_1head_9_1 ≤ 0head_9_0 + head_9_0 ≤ 0head_9_0head_9_0 ≤ 0elem_16_post + elem_16_post ≤ 0elem_16_postelem_16_post ≤ 0elem_16_0 + elem_16_0 ≤ 0elem_16_0elem_16_0 ≤ 0cnt_276_post + cnt_276_post ≤ 0cnt_276_postcnt_276_post ≤ 0cnt_276_0 + cnt_276_0 ≤ 0cnt_276_0cnt_276_0 ≤ 0cnt_269_post + cnt_269_post ≤ 0cnt_269_postcnt_269_post ≤ 0cnt_269_0 + cnt_269_0 ≤ 0cnt_269_0cnt_269_0 ≤ 0cnt_139_post + cnt_139_post ≤ 0cnt_139_postcnt_139_post ≤ 0cnt_139_0 + cnt_139_0 ≤ 0cnt_139_0cnt_139_0 ≤ 0cnt_133_post + cnt_133_post ≤ 0cnt_133_postcnt_133_post ≤ 0cnt_133_0 + cnt_133_0 ≤ 0cnt_133_0cnt_133_0 ≤ 0c_15_post + c_15_post ≤ 0c_15_postc_15_post ≤ 0c_15_0 + c_15_0 ≤ 0c_15_0c_15_0 ≤ 0a_243_post + a_243_post ≤ 0a_243_posta_243_post ≤ 0a_243_0 + a_243_0 ≤ 0a_243_0a_243_0 ≤ 0a_128_post + a_128_post ≤ 0a_128_posta_128_post ≤ 0a_128_0 + a_128_0 ≤ 0a_128_0a_128_0 ≤ 0____patmp2_post + ____patmp2_post ≤ 0____patmp2_post____patmp2_post ≤ 0____patmp2_0 + ____patmp2_0 ≤ 0____patmp2_0____patmp2_0 ≤ 0____patmp1_post + ____patmp1_post ≤ 0____patmp1_post____patmp1_post ≤ 0____patmp1_0 + ____patmp1_0 ≤ 0____patmp1_0____patmp1_0 ≤ 0____cil_tmp6_12_post + ____cil_tmp6_12_post ≤ 0____cil_tmp6_12_post____cil_tmp6_12_post ≤ 0____cil_tmp6_12_0 + ____cil_tmp6_12_0 ≤ 0____cil_tmp6_12_0____cil_tmp6_12_0 ≤ 0Result_6_post + Result_6_post ≤ 0Result_6_postResult_6_post ≤ 0Result_6_0 + Result_6_0 ≤ 0Result_6_0Result_6_0 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0 31 0_var_snapshot: y_80_0 + y_80_0 ≤ 0y_80_0y_80_0 ≤ 0y_309_0 + y_309_0 ≤ 0y_309_0y_309_0 ≤ 0y_259_0 + y_259_0 ≤ 0y_259_0y_259_0 ≤ 0y_158_0 + y_158_0 ≤ 0y_158_0y_158_0 ≤ 0y_14_post + y_14_post ≤ 0y_14_posty_14_post ≤ 0y_14_0 + y_14_0 ≤ 0y_14_0y_14_0 ≤ 0y_110_0 + y_110_0 ≤ 0y_110_0y_110_0 ≤ 0x_23_0 + x_23_0 ≤ 0x_23_0x_23_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_1 + x_13_1 ≤ 0x_13_1x_13_1 ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0tmp___0_11_post + tmp___0_11_post ≤ 0tmp___0_11_posttmp___0_11_post ≤ 0tmp___0_11_0 + tmp___0_11_0 ≤ 0tmp___0_11_0tmp___0_11_0 ≤ 0tmp_10_post + tmp_10_post ≤ 0tmp_10_posttmp_10_post ≤ 0tmp_10_0 + tmp_10_0 ≤ 0tmp_10_0tmp_10_0 ≤ 0prev_17_post + prev_17_post ≤ 0prev_17_postprev_17_post ≤ 0prev_17_0 + prev_17_0 ≤ 0prev_17_0prev_17_0 ≤ 0lt_21_post + lt_21_post ≤ 0lt_21_postlt_21_post ≤ 0lt_21_1 + lt_21_1 ≤ 0lt_21_1lt_21_1 ≤ 0lt_21_0 + lt_21_0 ≤ 0lt_21_0lt_21_0 ≤ 0lt_20_post + lt_20_post ≤ 0lt_20_postlt_20_post ≤ 0lt_20_1 + lt_20_1 ≤ 0lt_20_1lt_20_1 ≤ 0lt_20_0 + lt_20_0 ≤ 0lt_20_0lt_20_0 ≤ 0lt_19_post + lt_19_post ≤ 0lt_19_postlt_19_post ≤ 0lt_19_1 + lt_19_1 ≤ 0lt_19_1lt_19_1 ≤ 0lt_19_0 + lt_19_0 ≤ 0lt_19_0lt_19_0 ≤ 0lt_18_post + lt_18_post ≤ 0lt_18_postlt_18_post ≤ 0lt_18_1 + lt_18_1 ≤ 0lt_18_1lt_18_1 ≤ 0lt_18_0 + lt_18_0 ≤ 0lt_18_0lt_18_0 ≤ 0length_7_post + length_7_post ≤ 0length_7_postlength_7_post ≤ 0length_7_0 + length_7_0 ≤ 0length_7_0length_7_0 ≤ 0len_48_post + len_48_post ≤ 0len_48_postlen_48_post ≤ 0len_48_0 + len_48_0 ≤ 0len_48_0len_48_0 ≤ 0len_246_post + len_246_post ≤ 0len_246_postlen_246_post ≤ 0len_246_0 + len_246_0 ≤ 0len_246_0len_246_0 ≤ 0k_296_post + k_296_post ≤ 0k_296_postk_296_post ≤ 0k_296_0 + k_296_0 ≤ 0k_296_0k_296_0 ≤ 0i_8_post + i_8_post ≤ 0i_8_posti_8_post ≤ 0i_8_1 + i_8_1 ≤ 0i_8_1i_8_1 ≤ 0i_8_0 + i_8_0 ≤ 0i_8_0i_8_0 ≤ 0head_9_post + head_9_post ≤ 0head_9_posthead_9_post ≤ 0head_9_1 + head_9_1 ≤ 0head_9_1head_9_1 ≤ 0head_9_0 + head_9_0 ≤ 0head_9_0head_9_0 ≤ 0elem_16_post + elem_16_post ≤ 0elem_16_postelem_16_post ≤ 0elem_16_0 + elem_16_0 ≤ 0elem_16_0elem_16_0 ≤ 0cnt_276_post + cnt_276_post ≤ 0cnt_276_postcnt_276_post ≤ 0cnt_276_0 + cnt_276_0 ≤ 0cnt_276_0cnt_276_0 ≤ 0cnt_269_post + cnt_269_post ≤ 0cnt_269_postcnt_269_post ≤ 0cnt_269_0 + cnt_269_0 ≤ 0cnt_269_0cnt_269_0 ≤ 0cnt_139_post + cnt_139_post ≤ 0cnt_139_postcnt_139_post ≤ 0cnt_139_0 + cnt_139_0 ≤ 0cnt_139_0cnt_139_0 ≤ 0cnt_133_post + cnt_133_post ≤ 0cnt_133_postcnt_133_post ≤ 0cnt_133_0 + cnt_133_0 ≤ 0cnt_133_0cnt_133_0 ≤ 0c_15_post + c_15_post ≤ 0c_15_postc_15_post ≤ 0c_15_0 + c_15_0 ≤ 0c_15_0c_15_0 ≤ 0a_243_post + a_243_post ≤ 0a_243_posta_243_post ≤ 0a_243_0 + a_243_0 ≤ 0a_243_0a_243_0 ≤ 0a_128_post + a_128_post ≤ 0a_128_posta_128_post ≤ 0a_128_0 + a_128_0 ≤ 0a_128_0a_128_0 ≤ 0____patmp2_post + ____patmp2_post ≤ 0____patmp2_post____patmp2_post ≤ 0____patmp2_0 + ____patmp2_0 ≤ 0____patmp2_0____patmp2_0 ≤ 0____patmp1_post + ____patmp1_post ≤ 0____patmp1_post____patmp1_post ≤ 0____patmp1_0 + ____patmp1_0 ≤ 0____patmp1_0____patmp1_0 ≤ 0____cil_tmp6_12_post + ____cil_tmp6_12_post ≤ 0____cil_tmp6_12_post____cil_tmp6_12_post ≤ 0____cil_tmp6_12_0 + ____cil_tmp6_12_0 ≤ 0____cil_tmp6_12_0____cil_tmp6_12_0 ≤ 0Result_6_post + Result_6_post ≤ 0Result_6_postResult_6_post ≤ 0Result_6_0 + Result_6_0 ≤ 0Result_6_0Result_6_0 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

9* 40 9: y_80_0 + y_80_0 ≤ 0y_80_0y_80_0 ≤ 0y_309_0 + y_309_0 ≤ 0y_309_0y_309_0 ≤ 0y_259_0 + y_259_0 ≤ 0y_259_0y_259_0 ≤ 0y_158_0 + y_158_0 ≤ 0y_158_0y_158_0 ≤ 0y_14_post + y_14_post ≤ 0y_14_posty_14_post ≤ 0y_14_0 + y_14_0 ≤ 0y_14_0y_14_0 ≤ 0y_110_0 + y_110_0 ≤ 0y_110_0y_110_0 ≤ 0x_23_0 + x_23_0 ≤ 0x_23_0x_23_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_1 + x_13_1 ≤ 0x_13_1x_13_1 ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0tmp___0_11_post + tmp___0_11_post ≤ 0tmp___0_11_posttmp___0_11_post ≤ 0tmp___0_11_0 + tmp___0_11_0 ≤ 0tmp___0_11_0tmp___0_11_0 ≤ 0tmp_10_post + tmp_10_post ≤ 0tmp_10_posttmp_10_post ≤ 0tmp_10_0 + tmp_10_0 ≤ 0tmp_10_0tmp_10_0 ≤ 0prev_17_post + prev_17_post ≤ 0prev_17_postprev_17_post ≤ 0prev_17_0 + prev_17_0 ≤ 0prev_17_0prev_17_0 ≤ 0lt_21_post + lt_21_post ≤ 0lt_21_postlt_21_post ≤ 0lt_21_1 + lt_21_1 ≤ 0lt_21_1lt_21_1 ≤ 0lt_21_0 + lt_21_0 ≤ 0lt_21_0lt_21_0 ≤ 0lt_20_post + lt_20_post ≤ 0lt_20_postlt_20_post ≤ 0lt_20_1 + lt_20_1 ≤ 0lt_20_1lt_20_1 ≤ 0lt_20_0 + lt_20_0 ≤ 0lt_20_0lt_20_0 ≤ 0lt_19_post + lt_19_post ≤ 0lt_19_postlt_19_post ≤ 0lt_19_1 + lt_19_1 ≤ 0lt_19_1lt_19_1 ≤ 0lt_19_0 + lt_19_0 ≤ 0lt_19_0lt_19_0 ≤ 0lt_18_post + lt_18_post ≤ 0lt_18_postlt_18_post ≤ 0lt_18_1 + lt_18_1 ≤ 0lt_18_1lt_18_1 ≤ 0lt_18_0 + lt_18_0 ≤ 0lt_18_0lt_18_0 ≤ 0length_7_post + length_7_post ≤ 0length_7_postlength_7_post ≤ 0length_7_0 + length_7_0 ≤ 0length_7_0length_7_0 ≤ 0len_48_post + len_48_post ≤ 0len_48_postlen_48_post ≤ 0len_48_0 + len_48_0 ≤ 0len_48_0len_48_0 ≤ 0len_246_post + len_246_post ≤ 0len_246_postlen_246_post ≤ 0len_246_0 + len_246_0 ≤ 0len_246_0len_246_0 ≤ 0k_296_post + k_296_post ≤ 0k_296_postk_296_post ≤ 0k_296_0 + k_296_0 ≤ 0k_296_0k_296_0 ≤ 0i_8_post + i_8_post ≤ 0i_8_posti_8_post ≤ 0i_8_1 + i_8_1 ≤ 0i_8_1i_8_1 ≤ 0i_8_0 + i_8_0 ≤ 0i_8_0i_8_0 ≤ 0head_9_post + head_9_post ≤ 0head_9_posthead_9_post ≤ 0head_9_1 + head_9_1 ≤ 0head_9_1head_9_1 ≤ 0head_9_0 + head_9_0 ≤ 0head_9_0head_9_0 ≤ 0elem_16_post + elem_16_post ≤ 0elem_16_postelem_16_post ≤ 0elem_16_0 + elem_16_0 ≤ 0elem_16_0elem_16_0 ≤ 0cnt_276_post + cnt_276_post ≤ 0cnt_276_postcnt_276_post ≤ 0cnt_276_0 + cnt_276_0 ≤ 0cnt_276_0cnt_276_0 ≤ 0cnt_269_post + cnt_269_post ≤ 0cnt_269_postcnt_269_post ≤ 0cnt_269_0 + cnt_269_0 ≤ 0cnt_269_0cnt_269_0 ≤ 0cnt_139_post + cnt_139_post ≤ 0cnt_139_postcnt_139_post ≤ 0cnt_139_0 + cnt_139_0 ≤ 0cnt_139_0cnt_139_0 ≤ 0cnt_133_post + cnt_133_post ≤ 0cnt_133_postcnt_133_post ≤ 0cnt_133_0 + cnt_133_0 ≤ 0cnt_133_0cnt_133_0 ≤ 0c_15_post + c_15_post ≤ 0c_15_postc_15_post ≤ 0c_15_0 + c_15_0 ≤ 0c_15_0c_15_0 ≤ 0a_243_post + a_243_post ≤ 0a_243_posta_243_post ≤ 0a_243_0 + a_243_0 ≤ 0a_243_0a_243_0 ≤ 0a_128_post + a_128_post ≤ 0a_128_posta_128_post ≤ 0a_128_0 + a_128_0 ≤ 0a_128_0a_128_0 ≤ 0____patmp2_post + ____patmp2_post ≤ 0____patmp2_post____patmp2_post ≤ 0____patmp2_0 + ____patmp2_0 ≤ 0____patmp2_0____patmp2_0 ≤ 0____patmp1_post + ____patmp1_post ≤ 0____patmp1_post____patmp1_post ≤ 0____patmp1_0 + ____patmp1_0 ≤ 0____patmp1_0____patmp1_0 ≤ 0____cil_tmp6_12_post + ____cil_tmp6_12_post ≤ 0____cil_tmp6_12_post____cil_tmp6_12_post ≤ 0____cil_tmp6_12_0 + ____cil_tmp6_12_0 ≤ 0____cil_tmp6_12_0____cil_tmp6_12_0 ≤ 0Result_6_post + Result_6_post ≤ 0Result_6_postResult_6_post ≤ 0Result_6_0 + Result_6_0 ≤ 0Result_6_0Result_6_0 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

9 38 9_var_snapshot: y_80_0 + y_80_0 ≤ 0y_80_0y_80_0 ≤ 0y_309_0 + y_309_0 ≤ 0y_309_0y_309_0 ≤ 0y_259_0 + y_259_0 ≤ 0y_259_0y_259_0 ≤ 0y_158_0 + y_158_0 ≤ 0y_158_0y_158_0 ≤ 0y_14_post + y_14_post ≤ 0y_14_posty_14_post ≤ 0y_14_0 + y_14_0 ≤ 0y_14_0y_14_0 ≤ 0y_110_0 + y_110_0 ≤ 0y_110_0y_110_0 ≤ 0x_23_0 + x_23_0 ≤ 0x_23_0x_23_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_1 + x_13_1 ≤ 0x_13_1x_13_1 ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0tmp___0_11_post + tmp___0_11_post ≤ 0tmp___0_11_posttmp___0_11_post ≤ 0tmp___0_11_0 + tmp___0_11_0 ≤ 0tmp___0_11_0tmp___0_11_0 ≤ 0tmp_10_post + tmp_10_post ≤ 0tmp_10_posttmp_10_post ≤ 0tmp_10_0 + tmp_10_0 ≤ 0tmp_10_0tmp_10_0 ≤ 0prev_17_post + prev_17_post ≤ 0prev_17_postprev_17_post ≤ 0prev_17_0 + prev_17_0 ≤ 0prev_17_0prev_17_0 ≤ 0lt_21_post + lt_21_post ≤ 0lt_21_postlt_21_post ≤ 0lt_21_1 + lt_21_1 ≤ 0lt_21_1lt_21_1 ≤ 0lt_21_0 + lt_21_0 ≤ 0lt_21_0lt_21_0 ≤ 0lt_20_post + lt_20_post ≤ 0lt_20_postlt_20_post ≤ 0lt_20_1 + lt_20_1 ≤ 0lt_20_1lt_20_1 ≤ 0lt_20_0 + lt_20_0 ≤ 0lt_20_0lt_20_0 ≤ 0lt_19_post + lt_19_post ≤ 0lt_19_postlt_19_post ≤ 0lt_19_1 + lt_19_1 ≤ 0lt_19_1lt_19_1 ≤ 0lt_19_0 + lt_19_0 ≤ 0lt_19_0lt_19_0 ≤ 0lt_18_post + lt_18_post ≤ 0lt_18_postlt_18_post ≤ 0lt_18_1 + lt_18_1 ≤ 0lt_18_1lt_18_1 ≤ 0lt_18_0 + lt_18_0 ≤ 0lt_18_0lt_18_0 ≤ 0length_7_post + length_7_post ≤ 0length_7_postlength_7_post ≤ 0length_7_0 + length_7_0 ≤ 0length_7_0length_7_0 ≤ 0len_48_post + len_48_post ≤ 0len_48_postlen_48_post ≤ 0len_48_0 + len_48_0 ≤ 0len_48_0len_48_0 ≤ 0len_246_post + len_246_post ≤ 0len_246_postlen_246_post ≤ 0len_246_0 + len_246_0 ≤ 0len_246_0len_246_0 ≤ 0k_296_post + k_296_post ≤ 0k_296_postk_296_post ≤ 0k_296_0 + k_296_0 ≤ 0k_296_0k_296_0 ≤ 0i_8_post + i_8_post ≤ 0i_8_posti_8_post ≤ 0i_8_1 + i_8_1 ≤ 0i_8_1i_8_1 ≤ 0i_8_0 + i_8_0 ≤ 0i_8_0i_8_0 ≤ 0head_9_post + head_9_post ≤ 0head_9_posthead_9_post ≤ 0head_9_1 + head_9_1 ≤ 0head_9_1head_9_1 ≤ 0head_9_0 + head_9_0 ≤ 0head_9_0head_9_0 ≤ 0elem_16_post + elem_16_post ≤ 0elem_16_postelem_16_post ≤ 0elem_16_0 + elem_16_0 ≤ 0elem_16_0elem_16_0 ≤ 0cnt_276_post + cnt_276_post ≤ 0cnt_276_postcnt_276_post ≤ 0cnt_276_0 + cnt_276_0 ≤ 0cnt_276_0cnt_276_0 ≤ 0cnt_269_post + cnt_269_post ≤ 0cnt_269_postcnt_269_post ≤ 0cnt_269_0 + cnt_269_0 ≤ 0cnt_269_0cnt_269_0 ≤ 0cnt_139_post + cnt_139_post ≤ 0cnt_139_postcnt_139_post ≤ 0cnt_139_0 + cnt_139_0 ≤ 0cnt_139_0cnt_139_0 ≤ 0cnt_133_post + cnt_133_post ≤ 0cnt_133_postcnt_133_post ≤ 0cnt_133_0 + cnt_133_0 ≤ 0cnt_133_0cnt_133_0 ≤ 0c_15_post + c_15_post ≤ 0c_15_postc_15_post ≤ 0c_15_0 + c_15_0 ≤ 0c_15_0c_15_0 ≤ 0a_243_post + a_243_post ≤ 0a_243_posta_243_post ≤ 0a_243_0 + a_243_0 ≤ 0a_243_0a_243_0 ≤ 0a_128_post + a_128_post ≤ 0a_128_posta_128_post ≤ 0a_128_0 + a_128_0 ≤ 0a_128_0a_128_0 ≤ 0____patmp2_post + ____patmp2_post ≤ 0____patmp2_post____patmp2_post ≤ 0____patmp2_0 + ____patmp2_0 ≤ 0____patmp2_0____patmp2_0 ≤ 0____patmp1_post + ____patmp1_post ≤ 0____patmp1_post____patmp1_post ≤ 0____patmp1_0 + ____patmp1_0 ≤ 0____patmp1_0____patmp1_0 ≤ 0____cil_tmp6_12_post + ____cil_tmp6_12_post ≤ 0____cil_tmp6_12_post____cil_tmp6_12_post ≤ 0____cil_tmp6_12_0 + ____cil_tmp6_12_0 ≤ 0____cil_tmp6_12_0____cil_tmp6_12_0 ≤ 0Result_6_post + Result_6_post ≤ 0Result_6_postResult_6_post ≤ 0Result_6_0 + Result_6_0 ≤ 0Result_6_0Result_6_0 ≤ 0

8 SCC Decomposition

We consider subproblems for each of the 2 SCC(s) of the program graph.

8.1 SCC Subproblem 1/2

Here we consider the SCC { 9, 12, 13, 14, 19, 20, 9_var_snapshot, 9* }.

8.1.1 Transition Removal

We remove transition 16 using the following ranking functions, which are bounded by −69.

9: 87⋅a_243_0 − 3⋅length_7_0
12: 68 + 87⋅a_243_0 − 5⋅length_7_0 − 4⋅length_7_post
13: 87⋅a_243_0 − 5⋅length_7_0
14: −86 + 87⋅a_243_0
19: 87⋅a_243_0
20: 87⋅a_243_0 − 3⋅length_7_0 + 2⋅length_7_post
9_var_snapshot: 87⋅a_243_0 − 4⋅length_7_post
9*: −17 + 87⋅a_243_0 − 3⋅length_7_0 + 2⋅length_7_post
Hints:
38 lexWeak[ [0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
40 lexWeak[ [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
18 lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 87, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexWeak[ [2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexWeak[ [2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.1.2 Transition Removal

We remove transitions 38, 40, 18, 19, 25, 26, 27, 28 using the following ranking functions, which are bounded by −53.

9: −1 − 2⋅length_7_0length_7_post
12: 1 + len_48_0
13: len_48_0
14: len_48_0 − 2⋅length_7_0 + length_7_post
19: len_48_0 − 2⋅length_7_0
20: −2⋅length_7_0
9_var_snapshot: −19⋅len_48_0 − 2⋅length_7_0
9*: −2⋅length_7_0length_7_post
Hints:
38 lexStrict[ [1, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
40 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
18 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexStrict[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexStrict[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.1.3 Transition Removal

We remove transition 17 using the following ranking functions, which are bounded by 0.

9: 0
12: 1
13: 0
14: 0
19: 0
20: 0
9_var_snapshot: 0
9*: 0
Hints:
17 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.1.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

8.1.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 37.

8.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

8.2 SCC Subproblem 2/2

Here we consider the SCC { 0, 10, 0_var_snapshot, 0* }.

8.2.1 Transition Removal

We remove transition 13 using the following ranking functions, which are bounded by −595.

0: −36⋅i_8_0length_7_0
10: −36⋅i_8_0 + length_7_post
0_var_snapshot: −18 − 36⋅i_8_0
0*: −36⋅i_8_0length_7_0 + length_7_post
Hints:
31 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
13 lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.2.2 Transition Removal

We remove transitions 31, 33, 14 using the following ranking functions, which are bounded by −35.

0: −34
10: 0
0_var_snapshot: −3⋅length_7_0
0*: −17
Hints:
31 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
14 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

8.2.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

8.2.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 30.

8.2.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert