by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ y_0 ≤ 0 ∧ x_0 ≤ 0 ∧ −1 + p_post ≤ 0 ∧ 1 − p_post ≤ 0 ∧ p_0 − p_post ≤ 0 ∧ − p_0 + p_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | |
| 2 | 2 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | |
| 3 | 3 | 2: | x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | |
| 3 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ −1 − p_0 + p_post ≤ 0 ∧ 1 + p_0 − p_post ≤ 0 ∧ p_0 − p_post ≤ 0 ∧ − p_0 + p_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 5 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 − p_post ≤ 0 ∧ − p_0 + p_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 6 | 6 | 5: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | 
The following invariants are asserted.
| 0: | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 | 
| 1: | −1 + p_post ≤ 0 ∧ 1 − p_post ≤ 0 ∧ −1 + p_0 ≤ 0 ∧ 1 − p_0 ≤ 0 ∧ x_0 ≤ 0 ∧ y_0 ≤ 0 | 
| 2: | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 | 
| 3: | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 | 
| 4: | 1 − x_0 ≤ 0 | 
| 5: | TRUE | 
| 6: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 | ||
| 1 | (1) | −1 + p_post ≤ 0 ∧ 1 − p_post ≤ 0 ∧ −1 + p_0 ≤ 0 ∧ 1 − p_0 ≤ 0 ∧ x_0 ≤ 0 ∧ y_0 ≤ 0 | ||
| 2 | (2) | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 | ||
| 3 | (3) | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 | ||
| 4 | (4) | 1 − x_0 ≤ 0 | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | TRUE | 
| 0 | 0 1 | |
| 0 | 1 2 | |
| 2 | 2 0 | |
| 3 | 3 2 | |
| 3 | 4 4 | |
| 5 | 5 3 | |
| 6 | 6 5 | 
| 2 | 7 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | 
We remove transitions , , , , using the following ranking functions, which are bounded by −17.
| 6: | 0 | 
| 5: | 0 | 
| 3: | 0 | 
| 0: | 0 | 
| 2: | 0 | 
| 1: | 0 | 
| 4: | 0 | 
| : | −7 | 
| : | −8 | 
| : | −9 | 
| : | −10 | 
| : | −10 | 
| : | −10 | 
| : | −10 | 
| : | −11 | 
| : | −15 | 
| 8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 2.
| : | −1 + 4⋅y_0 | 
| : | 1 + 4⋅y_0 | 
| : | 4⋅y_0 | 
| : | 2 + 4⋅y_0 | 
| 8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0] ] | 
| 10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transitions 8, 10, using the following ranking functions, which are bounded by −3.
| : | −3 | 
| : | −1 | 
| : | −2 | 
| : | 0 | 
| 8 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert