by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ y_0 ≤ 0 ∧ x_0 ≤ 0 ∧ −1 + p_post ≤ 0 ∧ 1 − p_post ≤ 0 ∧ p_0 − p_post ≤ 0 ∧ − p_0 + p_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | |
2 | 2 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | |
3 | 3 | 2: | x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 | |
3 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ −1 − p_0 + p_post ≤ 0 ∧ 1 + p_0 − p_post ≤ 0 ∧ p_0 − p_post ≤ 0 ∧ − p_0 + p_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
5 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 − p_post ≤ 0 ∧ − p_0 + p_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
6 | 6 | 5: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 |
The following invariants are asserted.
0: | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 |
1: | −1 + p_post ≤ 0 ∧ 1 − p_post ≤ 0 ∧ −1 + p_0 ≤ 0 ∧ 1 − p_0 ≤ 0 ∧ x_0 ≤ 0 ∧ y_0 ≤ 0 |
2: | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 |
3: | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 |
4: | 1 − x_0 ≤ 0 |
5: | TRUE |
6: | TRUE |
The invariants are proved as follows.
0 | (0) | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 | ||
1 | (1) | −1 + p_post ≤ 0 ∧ 1 − p_post ≤ 0 ∧ −1 + p_0 ≤ 0 ∧ 1 − p_0 ≤ 0 ∧ x_0 ≤ 0 ∧ y_0 ≤ 0 | ||
2 | (2) | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 ∧ x_0 ≤ 0 | ||
3 | (3) | p_post ≤ 0 ∧ − p_post ≤ 0 ∧ p_0 ≤ 0 ∧ − p_0 ≤ 0 | ||
4 | (4) | 1 − x_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
2 | 2 0 | |
3 | 3 2 | |
3 | 4 4 | |
5 | 5 3 | |
6 | 6 5 |
2 | 7 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −17.6: | 0 |
5: | 0 |
3: | 0 |
0: | 0 |
2: | 0 |
1: | 0 |
4: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −11 |
: | −15 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − p_post + p_post ≤ 0 ∧ p_post − p_post ≤ 0 ∧ − p_0 + p_0 ≤ 0 ∧ p_0 − p_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 2.: | −1 + 4⋅y_0 |
: | 1 + 4⋅y_0 |
: | 4⋅y_0 |
: | 2 + 4⋅y_0 |
We remove transitions 8, 10, using the following ranking functions, which are bounded by −3.
: | −3 |
: | −1 |
: | −2 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert