by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX0_post + x0_post ≤ 0 ∧ −1 + oldX0_post − x0_post ≤ 0 ∧ − oldX2_post + x1_post ≤ 0 ∧ oldX2_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 | |
0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ 1 − oldX1_post + x1_post ≤ 0 ∧ −1 + oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
3 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX0_post + x0_post ≤ 0 ∧ −1 + oldX0_post − x0_post ≤ 0 ∧ −1 + x1_post ≤ 0 ∧ 1 − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
4 | 5 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX1_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
4 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX1_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
5 | 7 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
6 | 8 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX0_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
6 | 9 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX0_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
2 | 10 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
7 | 11 | 0: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
7 | 12 | 3: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
7 | 13 | 1: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
7 | 14 | 4: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
7 | 15 | 5: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
7 | 16 | 6: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
7 | 17 | 2: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
8 | 18 | 7: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 |
2 | 19 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 |
We remove transitions
, , , , , , , , , , , using the following ranking functions, which are bounded by −15.8: | 0 |
7: | 0 |
0: | 0 |
2: | 0 |
3: | 0 |
4: | 0 |
6: | 0 |
5: | 0 |
1: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −9 |
: | −10 |
20 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
20 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_2_x1_post is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_x1_post ≤ x1_post ∧ x1_post ≤ __snapshot_2_x1_post |
22: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post |
The new variable __snapshot_2_x1_0 is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_x1_0 ≤ x1_0 ∧ x1_0 ≤ __snapshot_2_x1_0 |
22: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 |
The new variable __snapshot_2_x0_post is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_x0_post ≤ x0_post ∧ x0_post ≤ __snapshot_2_x0_post |
22: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post |
The new variable __snapshot_2_x0_0 is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_x0_0 ≤ x0_0 ∧ x0_0 ≤ __snapshot_2_x0_0 |
22: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 |
The new variable __snapshot_2_oldX3_post is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX3_post ≤ oldX3_post ∧ oldX3_post ≤ __snapshot_2_oldX3_post |
22: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post |
The new variable __snapshot_2_oldX3_0 is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX3_0 ≤ oldX3_0 ∧ oldX3_0 ≤ __snapshot_2_oldX3_0 |
22: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 |
The new variable __snapshot_2_oldX2_post is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX2_post ≤ oldX2_post ∧ oldX2_post ≤ __snapshot_2_oldX2_post |
22: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post |
The new variable __snapshot_2_oldX2_0 is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX2_0 ≤ oldX2_0 ∧ oldX2_0 ≤ __snapshot_2_oldX2_0 |
22: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 |
The new variable __snapshot_2_oldX1_post is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX1_post ≤ oldX1_post ∧ oldX1_post ≤ __snapshot_2_oldX1_post |
22: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post |
The new variable __snapshot_2_oldX1_0 is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX1_0 ≤ oldX1_0 ∧ oldX1_0 ≤ __snapshot_2_oldX1_0 |
22: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 |
The new variable __snapshot_2_oldX0_post is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX0_post ≤ oldX0_post ∧ oldX0_post ≤ __snapshot_2_oldX0_post |
22: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post |
The new variable __snapshot_2_oldX0_0 is introduced. The transition formulas are extended as follows:
20: | __snapshot_2_oldX0_0 ≤ oldX0_0 ∧ oldX0_0 ≤ __snapshot_2_oldX0_0 |
22: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | TRUE |
3: | TRUE |
4: | TRUE |
5: | TRUE |
6: | TRUE |
7: | TRUE |
8: | TRUE |
: | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 |
: | TRUE ∨ 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∨ − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 |
: | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 |
: | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 |
: | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 |
: | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 |
: | 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∨ − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 |
The invariants are proved as follows.
0 | (8) | TRUE | ||
1 | (7) | TRUE | ||
2 | (0) | TRUE | ||
3 | (3) | TRUE | ||
4 | (1) | TRUE | ||
5 | (4) | TRUE | ||
6 | (5) | TRUE | ||
7 | (6) | TRUE | ||
8 | (2) | TRUE | ||
9 | (6) | TRUE | ||
10 | ( | )TRUE | ||
11 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | ||
16 | (1) | TRUE | ||
17 | (2) | TRUE | ||
18 | (2) | TRUE | ||
19 | (1) | TRUE | ||
20 | (2) | TRUE | ||
21 | (0) | TRUE | ||
22 | (3) | TRUE | ||
23 | (4) | TRUE | ||
24 | (5) | TRUE | ||
25 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | ||
26 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
27 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | ||
28 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
29 | ( | )1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
30 | ( | )1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
31 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | ||
36 | (1) | TRUE | ||
37 | ( | )1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
38 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | ||
43 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | ||
44 | ( | )− __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 |
4 | → 36 | Hint: auto | ||||
6 | → 24 | Hint: auto | ||||
9 | → 7 | Hint: auto | ||||
16 | → 36 | Hint: auto | ||||
17 | → 8 | Hint: auto | ||||
18 | → 8 | Hint: auto | ||||
19 | → 36 | Hint: auto | ||||
20 | → 8 | Hint: auto | ||||
21 | → 2 | Hint: auto | ||||
22 | → 3 | Hint: auto | ||||
23 | → 5 | Hint: auto | ||||
31 | → 11 |
Hint:
distribute conclusion
|
||||
37 | → 29 |
Hint:
distribute conclusion
|
||||
44 | → 11 |
Hint:
distribute conclusion
|
0 | 18 1 | Hint: auto | ||||||||
1 | 11 2 | Hint: auto | ||||||||
1 | 12 3 | Hint: auto | ||||||||
1 | 13 4 | Hint: auto | ||||||||
1 | 14 5 | Hint: auto | ||||||||
1 | 15 6 | Hint: auto | ||||||||
1 | 16 7 | Hint: auto | ||||||||
1 | 17 8 | Hint: auto | ||||||||
2 | 0 16 | Hint: auto | ||||||||
2 | 1 17 | Hint: auto | ||||||||
2 | 2 18 | Hint: auto | ||||||||
3 | 3 19 | Hint: auto | ||||||||
3 | 4 20 | Hint: auto | ||||||||
5 | 5 21 | Hint: auto | ||||||||
5 | 6 22 | Hint: auto | ||||||||
7 | 8 23 | Hint: auto | ||||||||
7 | 9 24 | Hint: auto | ||||||||
8 | 10 9 | Hint: auto | ||||||||
8 | 19 10 | Hint: auto | ||||||||
10 | 20 11 |
Hint:
distribute conclusion
|
||||||||
11 | 25 |
Hint:
distribute conclusion
|
||||||||
24 | 7 36 | Hint: auto | ||||||||
25 | 26 |
Hint:
distribute conclusion
|
||||||||
26 | 27 |
Hint:
distribute conclusion
|
||||||||
26 | 28 |
Hint:
distribute conclusion
|
||||||||
27 | 37 |
Hint:
distribute conclusion
|
||||||||
27 | 38 |
Hint:
distribute conclusion
|
||||||||
28 | 29 |
Hint:
distribute conclusion
|
||||||||
29 | 22 30 |
Hint:
distribute conclusion
|
||||||||
30 | 20 31 |
Hint:
distribute conclusion
|
||||||||
38 | 22 43 |
Hint:
distribute conclusion
|
||||||||
43 | 20 44 |
Hint:
distribute conclusion
|
We remove transition 22 using the following lexicographic ranking functions, which are bounded by [−1, −1].
: | [__snapshot_2_x0_0, __snapshot_2_x1_0] |
: | [x0_0, x1_0] |
: | [__snapshot_2_x0_0, __snapshot_2_x1_0] |
: | [__snapshot_2_x0_0, __snapshot_2_x1_0] |
: | [__snapshot_2_x0_0, __snapshot_2_x1_0] |
: | [__snapshot_2_x0_0, __snapshot_2_x1_0] |
: | [__snapshot_2_x0_0, __snapshot_2_x1_0] |
20 |
distribute assertion
|
||||||
22 |
distribute assertion
|
||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 20 using the following ranking functions, which are bounded by −9.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
: | −5 |
: | −6 |
: | −7 |
20 |
distribute assertion
|
||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert