by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
2 | 1 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ 1 − oldX1_post + x1_post ≤ 0 ∧ −1 + oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
2 | 2 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX1_post + x0_post ≤ 0 ∧ oldX1_post − x0_post ≤ 0 ∧ − oldX2_post + x1_post ≤ 0 ∧ oldX2_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 | |
3 | 3 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 + oldX1_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX1_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
5 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ 1 − oldX0_post + x1_post ≤ 0 ∧ −1 + oldX0_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
4 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX2_post + x1_post ≤ 0 ∧ oldX2_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 | |
6 | 7 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
6 | 8 | 7: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
6 | 9 | 1: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
6 | 10 | 0: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
6 | 11 | 2: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
6 | 12 | 3: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
6 | 13 | 5: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
6 | 14 | 4: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
8 | 15 | 6: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 |
3 | 16 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 |
4 | 23 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 |
We remove transitions
, , , , , , , , , , using the following ranking functions, which are bounded by −19.8: | 0 |
6: | 0 |
7: | 0 |
2: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
0: | 0 |
1: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −13 |
: | −14 |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
26 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , , }.We remove transition
using the following ranking functions, which are bounded by 2.: | 2 + 6⋅x1_0 |
: | 4 + 6⋅x1_0 |
: | 6⋅x0_0 |
: | −1 + 6⋅x0_0 |
: | 3 + 6⋅x1_0 |
: | 5 + 6⋅x1_0 |
: | 6⋅x0_0 |
: | 1 + 6⋅x0_0 |
17 | lexWeak[ [0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
19 | lexWeak[ [0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
26 | lexWeak[ [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 17, 19, 26, , , , using the following ranking functions, which are bounded by −4.
: | 3 |
: | −3 |
: | 1 |
: | −1 |
: | −4 |
: | −2 |
: | 0 |
: | 2 |
17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
19 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
26 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 24 using the following ranking functions, which are bounded by −1.
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −1 |
: | 0 |
24 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert