LTS Termination Proof

by T2Cert

Input

Integer Transition System
• Initial Location: 12
• Transitions: (pre-variables and post-variables)  0 0 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post − oldX3_post + x1_post ≤ 0 ∧ oldX1_post + oldX3_post − x1_post ≤ 0 ∧ 1 − oldX2_post + x2_post ≤ 0 ∧ −1 + oldX2_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 1 1 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ 1 + oldX2_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ − oldX2_post + x2_post ≤ 0 ∧ oldX2_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 1 2 0: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX2_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ − oldX2_post + x2_post ≤ 0 ∧ oldX2_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 3 3 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ x1_post ≤ 0 ∧ − x1_post ≤ 0 ∧ − oldX0_post + x2_post ≤ 0 ∧ oldX0_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 4 4 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX3_post + x0_post ≤ 0 ∧ oldX3_post − x0_post ≤ 0 ∧ − oldX4_post + x1_post ≤ 0 ∧ oldX4_post − x1_post ≤ 0 ∧ − oldX5_post + x2_post ≤ 0 ∧ oldX5_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ oldX5_0 − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 4 5 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ 1 − oldX0_post + x0_post ≤ 0 ∧ −1 + oldX0_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ − oldX4_post + x2_post ≤ 0 ∧ oldX4_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 7 6 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX3_post + x0_post ≤ 0 ∧ oldX3_post − x0_post ≤ 0 ∧ − oldX4_post + x1_post ≤ 0 ∧ oldX4_post − x1_post ≤ 0 ∧ − oldX5_post + x2_post ≤ 0 ∧ oldX5_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ oldX5_0 − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 8 7 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ 1 − oldX0_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ − oldX4_post + x2_post ≤ 0 ∧ oldX4_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 8 8 7: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ oldX0_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ − oldX4_post + x2_post ≤ 0 ∧ oldX4_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 2 9 9: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX3_post + x0_post ≤ 0 ∧ oldX3_post − x0_post ≤ 0 ∧ − oldX4_post + x1_post ≤ 0 ∧ oldX4_post − x1_post ≤ 0 ∧ − oldX5_post + x2_post ≤ 0 ∧ oldX5_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ oldX5_0 − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 6 10 8: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ − oldX4_post + x2_post ≤ 0 ∧ oldX4_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 10 11 11: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX3_post + x0_post ≤ 0 ∧ oldX3_post − x0_post ≤ 0 ∧ − oldX4_post + x1_post ≤ 0 ∧ oldX4_post − x1_post ≤ 0 ∧ − oldX5_post + x2_post ≤ 0 ∧ oldX5_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ oldX5_0 − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 10 12 3: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX2_post − x2_0 ≤ 0 ∧ − oldX2_post + x2_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ − oldX4_post + x2_post ≤ 0 ∧ oldX4_post − x2_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ oldX4_0 − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ x2_0 − x2_post ≤ 0 ∧ − x2_0 + x2_post ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 10 13 0: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 14 1: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 15 3: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 16 5: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 17 4: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 18 7: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 19 8: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 20 11: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 21 9: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 22 2: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 10 23 6: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 12 24 10: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 1 25 1: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 6 32 6: − x2_post + x2_post ≤ 0 ∧ x2_post − x2_post ≤ 0 ∧ − x2_0 + x2_0 ≤ 0 ∧ x2_0 − x2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX5_post + oldX5_post ≤ 0 ∧ oldX5_post − oldX5_post ≤ 0 ∧ − oldX5_0 + oldX5_0 ≤ 0 ∧ oldX5_0 − oldX5_0 ≤ 0 ∧ − oldX4_post + oldX4_post ≤ 0 ∧ oldX4_post − oldX4_post ≤ 0 ∧ − oldX4_0 + oldX4_0 ≤ 0 ∧ oldX4_0 − oldX4_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 1, 3, 4, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 using the following ranking functions, which are bounded by −27.

 12: 0 10: 0 3: 0 0: 0 1: 0 11: 0 2: 0 9: 0 4: 0 6: 0 8: 0 7: 0 5: 0 12: −11 10: −12 3: −13 0: −14 1: −14 1_var_snapshot: −14 1*: −14 11: −17 2: −18 9: −19 4: −20 6: −20 8: −20 6_var_snapshot: −20 6*: −20 7: −21 5: −22
Hints:
 26 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 33 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 7 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 9 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 11 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 12 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 13 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 14 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 15 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 16 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 17 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 18 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 19 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 20 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 21 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 22 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 23 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 24 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 28 1: x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 26 1_var_snapshot: x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 35 6: x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 33 6_var_snapshot: x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

7 SCC Decomposition

We consider subproblems for each of the 2 SCC(s) of the program graph.

7.1 SCC Subproblem 1/2

Here we consider the SCC { 0, 1, 1_var_snapshot, 1* }.

7.1.1 Transition Removal

We remove transition 2 using the following ranking functions, which are bounded by −1.

 0: −1 + 4⋅x2_0 1: 1 + 4⋅x2_0 1_var_snapshot: 4⋅x2_0 1*: 2 + 4⋅x2_0
Hints:
 26 lexWeak[ [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 28 lexWeak[ [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

7.1.2 Transition Removal

We remove transitions 26, 28, 0 using the following ranking functions, which are bounded by −2.

 0: 1 1: −1 1_var_snapshot: −2 1*: 0
Hints:
 26 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 28 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

7.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

7.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 25.

7.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

7.2 SCC Subproblem 2/2

Here we consider the SCC { 4, 6, 8, 6_var_snapshot, 6* }.

7.2.1 Transition Removal

We remove transition 7 using the following ranking functions, which are bounded by 3.

 4: −2 + 5⋅x0_0 6: 1 + 5⋅x0_0 8: −1 + 5⋅x0_0 6_var_snapshot: 5⋅x0_0 6*: 2 + 5⋅x0_0
Hints:
 33 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 35 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

7.2.2 Transition Removal

We remove transitions 33, 35, 5, 10 using the following ranking functions, which are bounded by −4.

 4: 0 6: −2 8: −4 6_var_snapshot: −3 6*: −1
Hints:
 33 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 35 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

7.2.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

7.2.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 32.

7.2.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0