LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
3 34 3: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0
4 41 4: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0
5 48 5: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0
11 55 11: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 4, 7, 10, 12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 using the following ranking functions, which are bounded by −27.

15: 0
14: 0
12: 0
10: 0
11: 0
0: 0
1: 0
2: 0
3: 0
4: 0
8: 0
9: 0
5: 0
7: 0
6: 0
13: 0
15: −9
14: −10
12: −11
10: −12
11: −12
11_var_snapshot: −12
11*: −12
0: −15
1: −15
2: −15
3: −15
4: −15
8: −15
9: −15
3_var_snapshot: −15
3*: −15
4_var_snapshot: −15
4*: −15
5: −18
7: −18
5_var_snapshot: −18
5*: −18
6: −21
13: −22

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 37 3: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 35 3_var_snapshot: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 44 4: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 42 4_var_snapshot: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 51 5: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 49 5_var_snapshot: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

11* 58 11: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

10 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

11 56 11_var_snapshot: x3_post + x3_post ≤ 0x3_postx3_post ≤ 0x3_0 + x3_0 ≤ 0x3_0x3_0 ≤ 0x2_post + x2_post ≤ 0x2_postx2_post ≤ 0x2_0 + x2_0 ≤ 0x2_0x2_0 ≤ 0x1_post + x1_post ≤ 0x1_postx1_post ≤ 0x1_0 + x1_0 ≤ 0x1_0x1_0 ≤ 0x0_post + x0_post ≤ 0x0_postx0_post ≤ 0x0_0 + x0_0 ≤ 0x0_0x0_0 ≤ 0oldX7_post + oldX7_post ≤ 0oldX7_postoldX7_post ≤ 0oldX7_0 + oldX7_0 ≤ 0oldX7_0oldX7_0 ≤ 0oldX6_post + oldX6_post ≤ 0oldX6_postoldX6_post ≤ 0oldX6_0 + oldX6_0 ≤ 0oldX6_0oldX6_0 ≤ 0oldX5_post + oldX5_post ≤ 0oldX5_postoldX5_post ≤ 0oldX5_0 + oldX5_0 ≤ 0oldX5_0oldX5_0 ≤ 0oldX4_post + oldX4_post ≤ 0oldX4_postoldX4_post ≤ 0oldX4_0 + oldX4_0 ≤ 0oldX4_0oldX4_0 ≤ 0oldX3_post + oldX3_post ≤ 0oldX3_postoldX3_post ≤ 0oldX3_0 + oldX3_0 ≤ 0oldX3_0oldX3_0 ≤ 0oldX2_post + oldX2_post ≤ 0oldX2_postoldX2_post ≤ 0oldX2_0 + oldX2_0 ≤ 0oldX2_0oldX2_0 ≤ 0oldX1_post + oldX1_post ≤ 0oldX1_postoldX1_post ≤ 0oldX1_0 + oldX1_0 ≤ 0oldX1_0oldX1_0 ≤ 0oldX0_post + oldX0_post ≤ 0oldX0_postoldX0_post ≤ 0oldX0_0 + oldX0_0 ≤ 0oldX0_0oldX0_0 ≤ 0

11 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

11.1 SCC Subproblem 1/3

Here we consider the SCC { 10, 11, 11_var_snapshot, 11* }.

11.1.1 Transition Removal

We remove transition 11 using the following ranking functions, which are bounded by 9.

10: −2 + 5⋅x0_0 − 5⋅x1_0
11: 1 + 5⋅x0_0 − 5⋅x1_0
11_var_snapshot: 5⋅x0_0 − 5⋅x1_0
11*: 2 + 5⋅x0_0 − 5⋅x1_0

11.1.2 Transition Removal

We remove transitions 56, 9 using the following ranking functions, which are bounded by −3.

10: 0
11: −2
11_var_snapshot: −3
11*: −1

11.1.3 Transition Removal

We remove transition 58 using the following ranking functions, which are bounded by −1.

10: 0
11: −1
11_var_snapshot: 0
11*: 0

11.1.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

11.1.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 55.

11.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

11.2 SCC Subproblem 2/3

Here we consider the SCC { 5, 7, 5_var_snapshot, 5* }.

11.2.1 Transition Removal

We remove transition 5 using the following ranking functions, which are bounded by 8.

5: 2 + 4⋅x0_0 − 4⋅x3_0
7: 4⋅x0_0 − 4⋅x3_0
5_var_snapshot: 1 + 4⋅x0_0 − 4⋅x3_0
5*: 3 + 4⋅x0_0 − 4⋅x3_0

11.2.2 Transition Removal

We remove transitions 49, 14 using the following ranking functions, which are bounded by −1.

5: 0
7: 2
5_var_snapshot: −1
5*: 1

11.2.3 Transition Removal

We remove transition 51 using the following ranking functions, which are bounded by −1.

5: −1
7: 0
5_var_snapshot: 0
5*: 0

11.2.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

11.2.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 48.

11.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

11.3 SCC Subproblem 3/3

Here we consider the SCC { 0, 1, 2, 3, 4, 8, 9, 3_var_snapshot, 3*, 4_var_snapshot, 4* }.

11.3.1 Transition Removal

We remove transition 8 using the following ranking functions, which are bounded by 16.

0: 3 + 6⋅x0_0 − 6⋅x2_0
1: 3 + 6⋅x0_0 − 6⋅x2_0
2: 3 + 6⋅x0_0 − 6⋅x2_0
3: 3 + 6⋅x0_0 − 6⋅x2_0
4: 1 + 6⋅x0_0 − 6⋅x2_0
8: 4 + 6⋅x0_0 − 6⋅x2_0
9: 5 + 6⋅x0_0 − 6⋅x2_0
3_var_snapshot: 3 + 6⋅x0_0 − 6⋅x2_0
3*: 3 + 6⋅x0_0 − 6⋅x2_0
4_var_snapshot: 6⋅x0_0 − 6⋅x2_0
4*: 2 + 6⋅x0_0 − 6⋅x2_0

11.3.2 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by −5.

0: 2 + 10⋅x2_0 − 10⋅x3_0
1: 10⋅x2_0 − 10⋅x3_0
2: 1 + 10⋅x2_0 − 10⋅x3_0
3: 4 + 10⋅x2_0 − 10⋅x3_0
4: −1 + 10⋅x2_0 − 10⋅x3_0
8: −4
9: −3 + 10⋅oldX2_post − 10⋅oldX3_post
3_var_snapshot: 3 + 10⋅x2_0 − 10⋅x3_0
3*: 5 + 10⋅x2_0 − 10⋅x3_0
4_var_snapshot: −2 + 10⋅x2_0 − 10⋅x3_0
4*: 10⋅x2_0 − 10⋅x3_0

11.3.3 Transition Removal

We remove transition 3 using the following ranking functions, which are bounded by 7.

0: 1 + 6⋅x0_0 − 6⋅x3_0
1: −1 + 6⋅x0_0 − 6⋅x3_0
2: 6⋅x0_0 − 6⋅x3_0
3: 3 + 6⋅x0_0 − 6⋅x3_0
4: 6⋅x0_0 − 6⋅x3_0
8: 0
9: −1 + 6⋅oldX0_post − 6⋅oldX3_post
3_var_snapshot: 2 + 6⋅x0_0 − 6⋅x3_0
3*: 4 + 6⋅x0_0 − 6⋅x3_0
4_var_snapshot: 6⋅x0_0 − 6⋅x3_0
4*: 1 + 6⋅x0_0 − 6⋅x3_0

11.3.4 Transition Removal

We remove transitions 35, 37, 44, 0, 1, 2, 15, 16, 17 using the following ranking functions, which are bounded by −7.

0: 2
1: 0
2: 1
3: −2
4: −5
8: 0
9: −7
3_var_snapshot: −3
3*: −1
4_var_snapshot: −6
4*: −4

11.3.5 Transition Removal

We remove transition 42 using the following ranking functions, which are bounded by 0.

0: 0
1: 0
2: 0
3: 0
4: 1
8: 0
9: 0
3_var_snapshot: 0
3*: 0
4_var_snapshot: 0
4*: 0

11.3.6 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

11.3.6.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 34.

11.3.6.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

11.3.6.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 41.

11.3.6.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert