LTS Termination Proof

by AProVE

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
l5 l5 l5: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l4 l4 l4: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l7 l7 l7: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l6 l6 l6: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l10 l10 l10: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l11 l11 l11: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l3 l3 l3: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l13 l13 l13: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l0 l0 l0: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l12 l12 l12: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l2 l2 l2: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
l9 l9 l9: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8
and for every transition t, a duplicate t is considered.

2 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

2.1 SCC Subproblem 1/3

Here we consider the SCC { l10, l9 }.

2.1.1 Transition Removal

We remove transition 12 using the following ranking functions, which are bounded by 0.

l9: 2⋅x1 − 2⋅x7 − 1
l10: 2⋅x1 − 2⋅x7

2.1.2 Transition Removal

We remove transition 10 using the following ranking functions, which are bounded by 0.

l9: 0
l10: −1

2.1.3 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.2 SCC Subproblem 2/3

Here we consider the SCC { l5, l4 }.

2.2.1 Transition Removal

We remove transition 7 using the following ranking functions, which are bounded by 0.

l4: 3⋅x7 + 1
l5: 3⋅x7 + 2

2.2.2 Transition Removal

We remove transition 5 using the following ranking functions, which are bounded by 0.

l4: 0
l5: −1

2.2.3 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.3 SCC Subproblem 3/3

Here we consider the SCC { l3, l2 }.

2.3.1 Transition Removal

We remove transition 4 using the following ranking functions, which are bounded by 0.

l2: −1 + x8
l3: x8

2.3.2 Transition Removal

We remove transition 2 using the following ranking functions, which are bounded by 0.

l2: 0
l3: −1

2.3.3 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

Tool configuration

AProVE