by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_0 ≤ 0 ∧ −1 + x_post ≤ 0 ∧ 1 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 | |
0 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 | |
2 | 2 | 3: | 4 − x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 | |
2 | 3 | 0: | −3 + x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 | |
1 | 4 | 2: | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 | |
4 | 5 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − ___const_5_0 + x_1 ≤ 0 ∧ ___const_5_0 − x_1 ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 | |
5 | 6 | 4: | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 |
The following invariants are asserted.
0: | −3 + x_0 ≤ 0 |
1: | TRUE |
2: | TRUE |
3: | 4 − x_0 ≤ 0 |
4: | TRUE |
5: | TRUE |
The invariants are proved as follows.
0 | (0) | −3 + x_0 ≤ 0 | ||
1 | (1) | TRUE | ||
2 | (2) | TRUE | ||
3 | (3) | 4 − x_0 ≤ 0 | ||
4 | (4) | TRUE | ||
5 | (5) | TRUE |
0 | 0 1 | |
0 | 1 1 | |
1 | 4 2 | |
2 | 2 3 | |
2 | 3 0 | |
4 | 5 1 | |
5 | 6 4 |
1 | 7 | : | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.5: | 0 |
4: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
3: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −8 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_5_0 + ___const_5_0 ≤ 0 ∧ ___const_5_0 − ___const_5_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , }.We remove transitions
, using the following ranking functions, which are bounded by −20.: | −2 − 6⋅x_0 |
: | 1 − 6⋅x_0 |
: | −1 − 6⋅x_0 |
: | −6⋅x_0 |
: | 2 − 6⋅x_0 |
We remove transitions 8, 10, using the following ranking functions, which are bounded by −3.
: | 0 |
: | −2 |
: | −4 |
: | −3 |
: | −1 |
We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | −1 |
: | 0 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert