by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_0 ≤ 0 ∧ −1 + x_post ≤ 0 ∧ 1 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 | |
| 0 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 | |
| 2 | 2 | 3: | 4 − x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 2 | 3 | 0: | −3 + x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 1 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 4 | 5 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 | |
| 5 | 6 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
The following invariants are asserted.
| 0: | −3 + x_0 ≤ 0 ∧ −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 |
| 1: | −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 |
| 2: | −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 |
| 3: | 4 − x_0 ≤ 0 ∧ −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 |
| 4: | TRUE |
| 5: | TRUE |
The invariants are proved as follows.
| 0 | (0) | −3 + x_0 ≤ 0 ∧ −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 | ||
| 1 | (1) | −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 | ||
| 2 | (2) | −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 | ||
| 3 | (3) | 4 − x_0 ≤ 0 ∧ −5 + x_1 ≤ 0 ∧ 5 − x_1 ≤ 0 | ||
| 4 | (4) | TRUE | ||
| 5 | (5) | TRUE |
| 0 | 0 1 | |
| 0 | 1 1 | |
| 1 | 4 2 | |
| 2 | 2 3 | |
| 2 | 3 0 | |
| 4 | 5 1 | |
| 5 | 6 4 |
| 1 | 7 | : | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
We remove transitions , , using the following ranking functions, which are bounded by −13.
| 5: | 0 |
| 4: | 0 |
| 0: | 0 |
| 1: | 0 |
| 2: | 0 |
| 3: | 0 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −8 |
| 8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_1 + x_1 ≤ 0 ∧ x_1 − x_1 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , }.
We remove transitions , using the following ranking functions, which are bounded by −45.
| : | −13⋅x_0 − x_1 |
| : | −13⋅x_0 + x_1 |
| : | −13⋅x_0 − x_1 |
| : | −13⋅x_0 |
| : | 6 − 13⋅x_0 |
| 8 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 13] ] |
| 10 | lexWeak[ [1, 0, 0, 0, 1, 0, 0, 13] ] |
| lexStrict[ [0, 1, 0, 0, 0, 13, 0, 13, 0, 13, 0, 0] , [0, 1, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 1, 0, 0, 0, 0, 0, 13, 0, 13, 0, 0] , [13, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 1, 0, 13] ] | |
| lexWeak[ [0, 1, 0, 0, 0, 0, 0, 1, 0, 13] ] |
We remove transitions 8, 10, , using the following ranking functions, which are bounded by 4.
| : | 0 |
| : | 15 |
| : | −5 + 2⋅x_1 |
| : | 2⋅x_1 |
| : | 4⋅x_1 |
| 8 | lexStrict[ [2, 0, 0, 0, 2, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
| 10 | lexStrict[ [0, 4, 0, 0, 0, 0, 0, 0] , [0, 4, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 2, 0, 0, 0, 0, 0, 0, 0] , [0, 2, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 2, 0, 0, 0] , [0, 2, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert