LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
0 6 0: n_post + n_post ≤ 0n_postn_post ≤ 0n_0 + n_0 ≤ 0n_0n_0 ≤ 0e_post + e_post ≤ 0e_poste_post ≤ 0e_0 + e_0 ≤ 0e_0e_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 4, 5 using the following ranking functions, which are bounded by −11.

4: 0
3: 0
0: 0
1: 0
2: 0
4: −4
3: −5
0: −6
1: −6
2: −6
0_var_snapshot: −6
0*: −6
Hints:
7 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ]

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0* 9 0: n_post + n_post ≤ 0n_postn_post ≤ 0n_0 + n_0 ≤ 0n_0n_0 ≤ 0e_post + e_post ≤ 0e_poste_post ≤ 0e_0 + e_0 ≤ 0e_0e_0 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0 7 0_var_snapshot: n_post + n_post ≤ 0n_postn_post ≤ 0n_0 + n_0 ≤ 0n_0n_0 ≤ 0e_post + e_post ≤ 0e_poste_post ≤ 0e_0 + e_0 ≤ 0e_0e_0 ≤ 0

5 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

5.1 SCC Subproblem 1/1

Here we consider the SCC { 0, 1, 2, 0_var_snapshot, 0* }.

5.1.1 Transition Removal

We remove transition 0 using the following ranking functions, which are bounded by −629.

0: −1 + 74⋅e_0 − 7⋅n_0
1: 74⋅e_0 − 7⋅n_0
2: 1 + 74⋅e_0 − 7⋅n_0
0_var_snapshot: −2 + 74⋅e_0 − 7⋅n_0
0*: 74⋅e_0 − 7⋅n_0
Hints:
7 lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ]
9 lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 7, 74, 0, 74, 0, 0, 7] , [0, 0, 0, 0, 74, 7, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ]
2 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 7, 74, 0, 74, 0, 0, 7] ]
3 lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ]

5.1.2 Transition Removal

We remove transition 2 using the following ranking functions, which are bounded by 9.

0: −20 + 30⋅e_0
1: 30⋅e_0
2: 30⋅e_0
0_var_snapshot: −20 + 30⋅e_0
0*: −10 + 30⋅e_0
Hints:
7 lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ]
9 lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ]
1 lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 30, 0, 0, 0] , [0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ]

5.1.3 Transition Removal

We remove transitions 7, 9, 1 using the following ranking functions, which are bounded by −3.

0: −2
1: 0
2: 0
0_var_snapshot: −3
0*: −1
Hints:
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ]

5.1.4 Transition Removal

We remove transition 3 using the following ranking functions, which are bounded by 0.

0: 0
1: 0
2: 1
0_var_snapshot: 0
0*: 0
Hints:
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ]

5.1.5 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

5.1.5.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 6.

5.1.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert