by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − e_0 ≤ 0 ∧ −100 + n_0 ≤ 0 ∧ −11 − n_0 + n_post ≤ 0 ∧ 11 + n_0 − n_post ≤ 0 ∧ −1 − e_0 + e_post ≤ 0 ∧ 1 + e_0 − e_post ≤ 0 ∧ e_0 − e_post ≤ 0 ∧ − e_0 + e_post ≤ 0 ∧ n_0 − n_post ≤ 0 ∧ − n_0 + n_post ≤ 0 | |
| 1 | 1 | 0: | − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − e_post + e_post ≤ 0 ∧ e_post − e_post ≤ 0 ∧ − e_0 + e_0 ≤ 0 ∧ e_0 − e_0 ≤ 0 | |
| 0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − e_0 ≤ 0 ∧ 101 − n_0 ≤ 0 ∧ 10 − n_0 + n_post ≤ 0 ∧ −10 + n_0 − n_post ≤ 0 ∧ 1 − e_0 + e_post ≤ 0 ∧ −1 + e_0 − e_post ≤ 0 ∧ e_0 − e_post ≤ 0 ∧ − e_0 + e_post ≤ 0 ∧ n_0 − n_post ≤ 0 ∧ − n_0 + n_post ≤ 0 | |
| 2 | 3 | 0: | − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − e_post + e_post ≤ 0 ∧ e_post − e_post ≤ 0 ∧ − e_0 + e_0 ≤ 0 ∧ e_0 − e_0 ≤ 0 | |
| 3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + e_post ≤ 0 ∧ 1 − e_post ≤ 0 ∧ e_0 − e_post ≤ 0 ∧ − e_0 + e_post ≤ 0 ∧ n_0 − n_post ≤ 0 ∧ − n_0 + n_post ≤ 0 | |
| 4 | 5 | 3: | − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − e_post + e_post ≤ 0 ∧ e_post − e_post ≤ 0 ∧ − e_0 + e_0 ≤ 0 ∧ e_0 − e_0 ≤ 0 |
| 0 | 6 | : | − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − e_post + e_post ≤ 0 ∧ e_post − e_post ≤ 0 ∧ − e_0 + e_0 ≤ 0 ∧ e_0 − e_0 ≤ 0 |
We remove transitions , using the following ranking functions, which are bounded by −11.
| 4: | 0 |
| 3: | 0 |
| 0: | 0 |
| 1: | 0 |
| 2: | 0 |
| : | −4 |
| : | −5 |
| : | −6 |
| : | −6 |
| : | −6 |
| : | −6 |
| : | −6 |
| 7 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − e_post + e_post ≤ 0 ∧ e_post − e_post ≤ 0 ∧ − e_0 + e_0 ≤ 0 ∧ e_0 − e_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − n_post + n_post ≤ 0 ∧ n_post − n_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − e_post + e_post ≤ 0 ∧ e_post − e_post ≤ 0 ∧ − e_0 + e_0 ≤ 0 ∧ e_0 − e_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , }.
We remove transition using the following ranking functions, which are bounded by −629.
| : | −1 + 74⋅e_0 − 7⋅n_0 |
| : | 74⋅e_0 − 7⋅n_0 |
| : | 1 + 74⋅e_0 − 7⋅n_0 |
| : | −2 + 74⋅e_0 − 7⋅n_0 |
| : | 74⋅e_0 − 7⋅n_0 |
| 7 | lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ] |
| 9 | lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 7, 74, 0, 74, 0, 0, 7] , [0, 0, 0, 0, 74, 7, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 7, 74, 0, 74, 0, 0, 7] ] | |
| lexWeak[ [0, 0, 0, 7, 0, 0, 74, 0] ] |
We remove transition using the following ranking functions, which are bounded by 9.
| : | −20 + 30⋅e_0 |
| : | 30⋅e_0 |
| : | 30⋅e_0 |
| : | −20 + 30⋅e_0 |
| : | −10 + 30⋅e_0 |
| 7 | lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ] |
| 9 | lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 30, 0, 0, 0] , [0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 30, 0] ] |
We remove transitions 7, 9, using the following ranking functions, which are bounded by −3.
| : | −2 |
| : | 0 |
| : | 0 |
| : | −3 |
| : | −1 |
| 7 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
| 9 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition using the following ranking functions, which are bounded by 0.
| : | 0 |
| : | 0 |
| : | 1 |
| : | 0 |
| : | 0 |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert