by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | |
| 1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ 1 − y_16_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | |
| 1 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 ≤ 0 ∧ result_11_post − temp0_14_0 ≤ 0 ∧ − result_11_post + temp0_14_0 ≤ 0 ∧ result_11_0 − result_11_post ≤ 0 ∧ − result_11_0 + result_11_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 | |
| 2 | 4 | 1: | y_16_0 ≤ 0 ∧ y_16_0 ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | |
| 2 | 5 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_16_0 ≤ 0 ∧ 1 − x_13_0 + x_13_post ≤ 0 ∧ −1 + x_13_0 − x_13_post ≤ 0 ∧ 1 − y_16_0 + y_16_post ≤ 0 ∧ −1 + y_16_0 − y_16_post ≤ 0 ∧ 1 + x_13_post − x_32_post ≤ 0 ∧ −1 − x_13_post + x_32_post ≤ 0 ∧ 1 + y_16_post − y_33_post ≤ 0 ∧ −1 − y_16_post + y_33_post ≤ 0 ∧ 1 − y_33_post ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ x_32_0 − x_32_post ≤ 0 ∧ − x_32_0 + x_32_post ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ y_33_0 − y_33_post ≤ 0 ∧ − y_33_0 + y_33_post ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | |
| 5 | 6 | 2: | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | |
| 6 | 7 | 0: | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | TRUE | 
| 3: | x_13_0 ≤ 0 | 
| 5: | 1 − y_33_post ≤ 0 ∧ 1 − y_33_0 ≤ 0 | 
| 6: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | x_13_0 ≤ 0 | ||
| 5 | (5) | 1 − y_33_post ≤ 0 ∧ 1 − y_33_0 ≤ 0 | ||
| 6 | (6) | TRUE | 
| 0 | 0 1 | |
| 1 | 1 2 | |
| 1 | 2 3 | |
| 2 | 4 1 | |
| 2 | 5 5 | |
| 5 | 6 2 | |
| 6 | 7 0 | 
| 1 | 8 | : | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | 
| 2 | 15 | : | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 | 
We remove transitions , , using the following ranking functions, which are bounded by −15.
| 6: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| 5: | 0 | 
| 3: | 0 | 
| : | −5 | 
| : | −6 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −13 | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We remove transition using the following ranking functions, which are bounded by 4.
| : | −4 + 10⋅x_13_0 | 
| : | −1 + 10⋅x_13_0 − 6⋅y_16_0 | 
| : | 1 + 10⋅x_13_0 − 6⋅y_16_0 | 
| : | −5 + 10⋅x_13_0 | 
| : | −3 + 10⋅x_13_0 | 
| : | −2 + 10⋅x_13_0 − 6⋅y_16_0 | 
| : | 10⋅x_13_0 − 6⋅y_16_0 | 
We remove transition using the following ranking functions, which are bounded by 1.
| : | −3 + 3⋅y_16_0 | 
| : | −1 + 3⋅y_16_0 | 
| : | 1 + 3⋅y_16_0 | 
| : | −4 + 3⋅y_16_0 | 
| : | −2 + 3⋅y_16_0 | 
| : | −1 + 3⋅y_16_0 | 
| : | 3⋅y_16_0 | 
We remove transitions 11, 16, 18, , using the following ranking functions, which are bounded by −3.
| : | −2 | 
| : | 1 | 
| : | 3 | 
| : | −3 | 
| : | −1 | 
| : | 0 | 
| : | 2 | 
We remove transition 9 using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −1 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert