# LTS Termination Proof

by T2Cert

## Input

Integer Transition System
• Initial Location: 6
• Transitions: (pre-variables and post-variables)  0 0 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 1 1 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ 1 − y_16_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 1 2 3: 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 ≤ 0 ∧ result_11_post − temp0_14_0 ≤ 0 ∧ − result_11_post + temp0_14_0 ≤ 0 ∧ result_11_0 − result_11_post ≤ 0 ∧ − result_11_0 + result_11_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 2 4 1: y_16_0 ≤ 0 ∧ y_16_0 ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 2 5 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_16_0 ≤ 0 ∧ 1 − x_13_0 + x_13_post ≤ 0 ∧ −1 + x_13_0 − x_13_post ≤ 0 ∧ 1 − y_16_0 + y_16_post ≤ 0 ∧ −1 + y_16_0 − y_16_post ≤ 0 ∧ 1 + x_13_post − x_32_post ≤ 0 ∧ −1 − x_13_post + x_32_post ≤ 0 ∧ 1 + y_16_post − y_33_post ≤ 0 ∧ −1 − y_16_post + y_33_post ≤ 0 ∧ 1 − y_33_post ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ x_32_0 − x_32_post ≤ 0 ∧ − x_32_0 + x_32_post ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ y_33_0 − y_33_post ≤ 0 ∧ − y_33_0 + y_33_post ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 5 6 2: − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 6 7 0: − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0

## Proof

The following invariants are asserted.

 0: TRUE 1: TRUE 2: TRUE 3: x_13_0 ≤ 0 5: 1 − y_33_post ≤ 0 ∧ 1 − y_33_0 ≤ 0 6: TRUE

The invariants are proved as follows.

### IMPACT Invariant Proof

• nodes (location) invariant:  0 (0) TRUE 1 (1) TRUE 2 (2) TRUE 3 (3) x_13_0 ≤ 0 5 (5) 1 − y_33_post ≤ 0 ∧ 1 − y_33_0 ≤ 0 6 (6) TRUE
• initial node: 6
• cover edges:
• transition edges:  0 0 1 1 1 2 1 2 3 2 4 1 2 5 5 5 6 2 6 7 0

### 2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 1 8 1: − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0 2 15 2: − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − temp0_14_0 + temp0_14_0 ≤ 0 ∧ temp0_14_0 − temp0_14_0 ≤ 0 ∧ − result_11_post + result_11_post ≤ 0 ∧ result_11_post − result_11_post ≤ 0 ∧ − result_11_0 + result_11_0 ≤ 0 ∧ result_11_0 − result_11_0 ≤ 0
and for every transition t, a duplicate t is considered.

### 3 Transition Removal

We remove transitions 0, 2, 7 using the following ranking functions, which are bounded by −15.

 6: 0 0: 0 1: 0 2: 0 5: 0 3: 0 6: −5 0: −6 1: −7 2: −7 5: −7 1_var_snapshot: −7 1*: −7 2_var_snapshot: −7 2*: −7 3: −13

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 11 1: y_33_post + y_33_post ≤ 0y_33_posty_33_post ≤ 0y_33_0 + y_33_0 ≤ 0y_33_0y_33_0 ≤ 0y_28_post + y_28_post ≤ 0y_28_posty_28_post ≤ 0y_28_0 + y_28_0 ≤ 0y_28_0y_28_0 ≤ 0y_16_post + y_16_post ≤ 0y_16_posty_16_post ≤ 0y_16_0 + y_16_0 ≤ 0y_16_0y_16_0 ≤ 0x_32_post + x_32_post ≤ 0x_32_postx_32_post ≤ 0x_32_0 + x_32_0 ≤ 0x_32_0x_32_0 ≤ 0x_27_post + x_27_post ≤ 0x_27_postx_27_post ≤ 0x_27_0 + x_27_0 ≤ 0x_27_0x_27_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0temp0_14_0 + temp0_14_0 ≤ 0temp0_14_0temp0_14_0 ≤ 0result_11_post + result_11_post ≤ 0result_11_postresult_11_post ≤ 0result_11_0 + result_11_0 ≤ 0result_11_0result_11_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 9 1_var_snapshot: y_33_post + y_33_post ≤ 0y_33_posty_33_post ≤ 0y_33_0 + y_33_0 ≤ 0y_33_0y_33_0 ≤ 0y_28_post + y_28_post ≤ 0y_28_posty_28_post ≤ 0y_28_0 + y_28_0 ≤ 0y_28_0y_28_0 ≤ 0y_16_post + y_16_post ≤ 0y_16_posty_16_post ≤ 0y_16_0 + y_16_0 ≤ 0y_16_0y_16_0 ≤ 0x_32_post + x_32_post ≤ 0x_32_postx_32_post ≤ 0x_32_0 + x_32_0 ≤ 0x_32_0x_32_0 ≤ 0x_27_post + x_27_post ≤ 0x_27_postx_27_post ≤ 0x_27_0 + x_27_0 ≤ 0x_27_0x_27_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0temp0_14_0 + temp0_14_0 ≤ 0temp0_14_0temp0_14_0 ≤ 0result_11_post + result_11_post ≤ 0result_11_postresult_11_post ≤ 0result_11_0 + result_11_0 ≤ 0result_11_0result_11_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 18 2: y_33_post + y_33_post ≤ 0y_33_posty_33_post ≤ 0y_33_0 + y_33_0 ≤ 0y_33_0y_33_0 ≤ 0y_28_post + y_28_post ≤ 0y_28_posty_28_post ≤ 0y_28_0 + y_28_0 ≤ 0y_28_0y_28_0 ≤ 0y_16_post + y_16_post ≤ 0y_16_posty_16_post ≤ 0y_16_0 + y_16_0 ≤ 0y_16_0y_16_0 ≤ 0x_32_post + x_32_post ≤ 0x_32_postx_32_post ≤ 0x_32_0 + x_32_0 ≤ 0x_32_0x_32_0 ≤ 0x_27_post + x_27_post ≤ 0x_27_postx_27_post ≤ 0x_27_0 + x_27_0 ≤ 0x_27_0x_27_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0temp0_14_0 + temp0_14_0 ≤ 0temp0_14_0temp0_14_0 ≤ 0result_11_post + result_11_post ≤ 0result_11_postresult_11_post ≤ 0result_11_0 + result_11_0 ≤ 0result_11_0result_11_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 16 2_var_snapshot: y_33_post + y_33_post ≤ 0y_33_posty_33_post ≤ 0y_33_0 + y_33_0 ≤ 0y_33_0y_33_0 ≤ 0y_28_post + y_28_post ≤ 0y_28_posty_28_post ≤ 0y_28_0 + y_28_0 ≤ 0y_28_0y_28_0 ≤ 0y_16_post + y_16_post ≤ 0y_16_posty_16_post ≤ 0y_16_0 + y_16_0 ≤ 0y_16_0y_16_0 ≤ 0x_32_post + x_32_post ≤ 0x_32_postx_32_post ≤ 0x_32_0 + x_32_0 ≤ 0x_32_0x_32_0 ≤ 0x_27_post + x_27_post ≤ 0x_27_postx_27_post ≤ 0x_27_0 + x_27_0 ≤ 0x_27_0x_27_0 ≤ 0x_13_post + x_13_post ≤ 0x_13_postx_13_post ≤ 0x_13_0 + x_13_0 ≤ 0x_13_0x_13_0 ≤ 0temp0_14_0 + temp0_14_0 ≤ 0temp0_14_0temp0_14_0 ≤ 0result_11_post + result_11_post ≤ 0result_11_postresult_11_post ≤ 0result_11_0 + result_11_0 ≤ 0result_11_0result_11_0 ≤ 0

### 8 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

### 8.1 SCC Subproblem 1/1

Here we consider the SCC { 1, 2, 5, 1_var_snapshot, 1*, 2_var_snapshot, 2* }.

### 8.1.1 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by 4.

 1: −4 + 10⋅x_13_0 2: −1 + 10⋅x_13_0 − 6⋅y_16_0 5: 1 + 10⋅x_13_0 − 6⋅y_16_0 1_var_snapshot: −5 + 10⋅x_13_0 1*: −3 + 10⋅x_13_0 2_var_snapshot: −2 + 10⋅x_13_0 − 6⋅y_16_0 2*: 10⋅x_13_0 − 6⋅y_16_0

### 8.1.2 Transition Removal

We remove transition 5 using the following ranking functions, which are bounded by 1.

 1: −3 + 3⋅y_16_0 2: −1 + 3⋅y_16_0 5: 1 + 3⋅y_16_0 1_var_snapshot: −4 + 3⋅y_16_0 1*: −2 + 3⋅y_16_0 2_var_snapshot: −1 + 3⋅y_16_0 2*: 3⋅y_16_0

### 8.1.3 Transition Removal

We remove transitions 11, 16, 18, 4, 6 using the following ranking functions, which are bounded by −3.

 1: −2 2: 1 5: 3 1_var_snapshot: −3 1*: −1 2_var_snapshot: 0 2*: 2

### 8.1.4 Transition Removal

We remove transition 9 using the following ranking functions, which are bounded by −1.

 1: 0 2: 0 5: 0 1_var_snapshot: −1 1*: 0 2_var_snapshot: 0 2*: 0

### 8.1.5 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

### 8.1.5.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 8.

### 8.1.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 8.1.5.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 15.

### 8.1.5.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0