by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ −5000 + y_16_post ≤ 0 ∧ 5000 − y_16_post ≤ 0 ∧ 1 − y_16_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 | |
2 | 3 | 1: | y_16_0 ≤ 0 ∧ y_16_0 ≤ 0 ∧ − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 | |
2 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_16_0 ≤ 0 ∧ 1 − x_13_0 + x_13_post ≤ 0 ∧ −1 + x_13_0 − x_13_post ≤ 0 ∧ 1 − y_16_0 + y_16_post ≤ 0 ∧ −1 + y_16_0 − y_16_post ≤ 0 ∧ 1 + x_13_post − x_32_post ≤ 0 ∧ −1 − x_13_post + x_32_post ≤ 0 ∧ 1 + y_16_post − y_33_post ≤ 0 ∧ −1 − y_16_post + y_33_post ≤ 0 ∧ 1 − y_33_post ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ x_32_0 − x_32_post ≤ 0 ∧ − x_32_0 + x_32_post ≤ 0 ∧ y_16_0 − y_16_post ≤ 0 ∧ − y_16_0 + y_16_post ≤ 0 ∧ y_33_0 − y_33_post ≤ 0 ∧ − y_33_0 + y_33_post ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 | |
4 | 5 | 2: | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 | |
5 | 6 | 0: | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | TRUE |
4: | 1 − y_33_post ≤ 0 ∧ 1 − y_33_0 ≤ 0 |
5: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | TRUE | ||
4 | (4) | 1 − y_33_post ≤ 0 ∧ 1 − y_33_0 ≤ 0 | ||
5 | (5) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
2 | 3 1 | |
2 | 4 4 | |
4 | 5 2 | |
5 | 6 0 |
1 | 7 | : | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 |
2 | 14 | : | − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −13.5: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
4: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − y_33_post + y_33_post ≤ 0 ∧ y_33_post − y_33_post ≤ 0 ∧ − y_33_0 + y_33_0 ≤ 0 ∧ y_33_0 − y_33_0 ≤ 0 ∧ − y_28_post + y_28_post ≤ 0 ∧ y_28_post − y_28_post ≤ 0 ∧ − y_28_0 + y_28_0 ≤ 0 ∧ y_28_0 − y_28_0 ≤ 0 ∧ − y_16_post + y_16_post ≤ 0 ∧ y_16_post − y_16_post ≤ 0 ∧ − y_16_0 + y_16_0 ≤ 0 ∧ y_16_0 − y_16_0 ≤ 0 ∧ − x_32_post + x_32_post ≤ 0 ∧ x_32_post − x_32_post ≤ 0 ∧ − x_32_0 + x_32_0 ≤ 0 ∧ x_32_0 − x_32_0 ≤ 0 ∧ − x_27_post + x_27_post ≤ 0 ∧ x_27_post − x_27_post ≤ 0 ∧ − x_27_0 + x_27_0 ≤ 0 ∧ x_27_0 − x_27_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , }.We remove transition
using the following ranking functions, which are bounded by −9995.: | −20000 + 10006⋅x_13_0 |
: | −5000 + 10006⋅x_13_0 − 5⋅y_16_0 |
: | 1 + 10006⋅x_13_0 − 5⋅y_16_0 |
: | −20000 + 10006⋅x_13_0 |
: | −15000 + 10006⋅x_13_0 |
: | −10000 + 10006⋅x_13_0 − 5⋅y_16_0 |
: | 10006⋅x_13_0 − 5⋅y_16_0 |
We remove transition
using the following ranking functions, which are bounded by 1.: | −4 + 4⋅y_16_0 |
: | −1 + 4⋅y_16_0 |
: | 1 + 4⋅y_16_0 |
: | −5 + 4⋅y_16_0 |
: | −3 + 4⋅y_16_0 |
: | −2 + 4⋅y_16_0 |
: | 4⋅y_16_0 |
We remove transitions 8, 10, 15, 17, , using the following ranking functions, which are bounded by −3.
: | −2 |
: | 1 |
: | 3⋅y_33_0 |
: | −3 |
: | −1 |
: | 0 |
: | 2 |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert