by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_5_0 + y_6_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_5_0 − y_6_0 ≤ 0 ∧ tmp_7_post ≤ 0 ∧ − tmp_7_post ≤ 0 ∧ 1 − y_6_0 + y_6_post ≤ 0 ∧ −1 + y_6_0 − y_6_post ≤ 0 ∧ tmp_7_0 − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_post ≤ 0 ∧ y_6_0 − y_6_post ≤ 0 ∧ − y_6_0 + y_6_post ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 2 | 2 | 0: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 0 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_5_0 − y_6_0 ≤ 0 ∧ tmp_7_0 − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 3 | 4 | 4: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 4 | 5 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − x_5_0 + x_5_post ≤ 0 ∧ 1 + x_5_0 − x_5_post ≤ 0 ∧ x_5_0 − x_5_post ≤ 0 ∧ − x_5_0 + x_5_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 5 | 6 | 0: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 6 | 7 | 0: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 7 | 8 | 6: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | TRUE |
| 2: | tmp_7_post ≤ 0 ∧ − tmp_7_post ≤ 0 ∧ tmp_7_0 ≤ 0 ∧ − tmp_7_0 ≤ 0 |
| 3: | TRUE |
| 4: | TRUE |
| 5: | TRUE |
| 6: | TRUE |
| 7: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | tmp_7_post ≤ 0 ∧ − tmp_7_post ≤ 0 ∧ tmp_7_0 ≤ 0 ∧ − tmp_7_0 ≤ 0 | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | TRUE | ||
| 7 | (7) | TRUE |
| 0 | 0 1 | |
| 0 | 1 2 | |
| 0 | 3 3 | |
| 2 | 2 0 | |
| 3 | 4 4 | |
| 4 | 5 5 | |
| 5 | 6 0 | |
| 6 | 7 0 | |
| 7 | 8 6 |
| 0 | 9 | : | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions , , using the following ranking functions, which are bounded by −13.
| 7: | 0 |
| 6: | 0 |
| 0: | 0 |
| 2: | 0 |
| 3: | 0 |
| 4: | 0 |
| 5: | 0 |
| 1: | 0 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −11 |
| 10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − tmp_7_post + tmp_7_post ≤ 0 ∧ tmp_7_post − tmp_7_post ≤ 0 ∧ − tmp_7_0 + tmp_7_0 ≤ 0 ∧ tmp_7_0 − tmp_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We remove transition using the following ranking functions, which are bounded by 0.
| : | −2 − 3⋅x_5_0 + 3⋅y_6_0 |
| : | −1 − 3⋅x_5_0 + 3⋅y_6_0 |
| : | −2 − 3⋅x_5_0 + 3⋅y_6_0 |
| : | −3 − 3⋅x_5_0 + 3⋅y_6_0 |
| : | −3⋅x_5_0 + 3⋅y_6_0 |
| : | −2 − 3⋅x_5_0 + 3⋅y_6_0 |
| : | −1 − 3⋅x_5_0 + 3⋅y_6_0 |
| 10 | lexWeak[ [0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 12 | lexWeak[ [0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0] , [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 3, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition using the following ranking functions, which are bounded by 2.
| : | −2 − 6⋅x_5_0 + 6⋅y_6_0 |
| : | −6⋅x_5_0 + 6⋅y_6_0 |
| : | −4 − 6⋅x_5_0 + 6⋅y_6_0 |
| : | −5 − 6⋅x_5_0 + 6⋅y_6_0 |
| : | −6⋅x_5_0 + 6⋅y_6_0 |
| : | −3 − 6⋅x_5_0 + 6⋅y_6_0 |
| : | −1 − 6⋅x_5_0 + 6⋅y_6_0 |
| 10 | lexWeak[ [0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 12 | lexWeak[ [0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0] , [0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 6, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 10, 12, , , using the following ranking functions, which are bounded by −2.
| : | −1 |
| : | 1 |
| : | 3 |
| : | 2 |
| : | 1 |
| : | −2 |
| : | 0 |
| 10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 12 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition using the following ranking functions, which are bounded by −1.
| : | 0 |
| : | 0 |
| : | 0 |
| : | −1 |
| : | 0 |
| : | 0 |
| : | 0 |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert