by T2Cert
0 | 0 | 1: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
2 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − y_0 + z_0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
2 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + y_0 − z_0 ≤ 0 ∧ −1 − y_0 + y_post ≤ 0 ∧ 1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
3 | 3 | 2: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
1 | 4 | 2: | 1 + x_0 − y_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
4 | 5 | 0: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
1 | 6 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
2 | 13 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −13.4: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
3: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
7 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
14 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | − y_0 + z_0 |
: | − y_0 + z_0 |
: | − y_0 + z_0 |
: | − y_0 + z_0 |
: | − y_0 + z_0 |
: | − y_0 + z_0 |
: | − y_0 + z_0 |
7 | lexWeak[ [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
9 | lexWeak[ [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
14 | lexWeak[ [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
16 | lexWeak[ [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] ] | |
lexStrict[ [0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] | |
lexWeak[ [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by 7.: | 1 − 8⋅x_0 + 8⋅y_0 |
: | −4 − 8⋅x_0 + 8⋅y_0 |
: | −2 − 8⋅x_0 + 8⋅y_0 |
: | −8⋅x_0 + 8⋅y_0 |
: | 2 − 8⋅x_0 + 8⋅y_0 |
: | −5 − 8⋅x_0 + 8⋅y_0 |
: | −3 − 8⋅x_0 + 8⋅y_0 |
7 | lexWeak[ [0, 0, 0, 0, 8, 0, 0, 0, 0, 8] ] |
9 | lexWeak[ [0, 0, 0, 0, 8, 0, 0, 0, 0, 8] ] |
14 | lexWeak[ [0, 0, 0, 0, 8, 0, 0, 0, 0, 8] ] |
16 | lexWeak[ [0, 0, 0, 0, 8, 0, 0, 0, 0, 8] ] |
lexWeak[ [0, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 8, 0] ] | |
lexWeak[ [0, 0, 0, 0, 8, 0, 0, 0, 0, 8] ] | |
lexStrict[ [0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8] , [8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 9, 14, 16, , using the following ranking functions, which are bounded by −6.
: | −5 |
: | −2 |
: | 0 |
: | −6 |
: | −4 |
: | −3 |
: | −1 |
7 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
9 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
14 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
16 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 7 using the following ranking functions, which are bounded by −1.
: | 0 |
: | 0 |
: | 0 |
: | −1 |
: | 0 |
: | 0 |
: | 0 |
7 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert