by AProVE
l0 | 1 | l1: | x1 = ___const_500HAT0 ∧ x2 = _i_13HAT0 ∧ x3 = _j_15HAT0 ∧ x4 = _rt_11HAT0 ∧ x5 = _s_16HAT0 ∧ x6 = _s_17HAT0 ∧ x7 = _st_14HAT0 ∧ x1 = ___const_500HATpost ∧ x2 = _i_13HATpost ∧ x3 = _j_15HATpost ∧ x4 = _rt_11HATpost ∧ x5 = _s_16HATpost ∧ x6 = _s_17HATpost ∧ x7 = _st_14HATpost ∧ _i_13HAT1 = _s_17HAT0 ∧ _j_15HATpost = _s_16HAT0 ∧ _i_13HATpost = _j_15HATpost ∧ ___const_500HAT0 = ___const_500HATpost ∧ _rt_11HAT0 = _rt_11HATpost ∧ _s_16HAT0 = _s_16HATpost ∧ _s_17HAT0 = _s_17HATpost ∧ _st_14HAT0 = _st_14HATpost | |
l2 | 2 | l3: | x1 = _x ∧ x2 = _x1 ∧ x3 = _x2 ∧ x4 = _x3 ∧ x5 = _x4 ∧ x6 = _x5 ∧ x7 = _x6 ∧ x1 = _x7 ∧ x2 = _x8 ∧ x3 = _x9 ∧ x4 = _x10 ∧ x5 = _x11 ∧ x6 = _x12 ∧ x7 = _x13 ∧ _x6 = _x13 ∧ _x5 = _x12 ∧ _x4 = _x11 ∧ _x2 = _x9 ∧ _x1 = _x8 ∧ _x = _x7 ∧ _x10 = _x6 ∧ _x ≤ _x1 | |
l2 | 3 | l4: | x1 = _x14 ∧ x2 = _x15 ∧ x3 = _x16 ∧ x4 = _x17 ∧ x5 = _x18 ∧ x6 = _x19 ∧ x7 = _x20 ∧ x1 = _x21 ∧ x2 = _x22 ∧ x3 = _x23 ∧ x4 = _x24 ∧ x5 = _x25 ∧ x6 = _x26 ∧ x7 = _x27 ∧ _x20 = _x27 ∧ _x19 = _x26 ∧ _x18 = _x25 ∧ _x17 = _x24 ∧ _x16 = _x23 ∧ _x14 = _x21 ∧ _x22 = 1 + _x15 ∧ 1 + _x15 ≤ _x14 | |
l4 | 4 | l2: | x1 = _x28 ∧ x2 = _x29 ∧ x3 = _x30 ∧ x4 = _x31 ∧ x5 = _x32 ∧ x6 = _x33 ∧ x7 = _x34 ∧ x1 = _x35 ∧ x2 = _x36 ∧ x3 = _x37 ∧ x4 = _x38 ∧ x5 = _x39 ∧ x6 = _x40 ∧ x7 = _x41 ∧ _x34 = _x41 ∧ _x33 = _x40 ∧ _x32 = _x39 ∧ _x31 = _x38 ∧ _x30 = _x37 ∧ _x29 = _x36 ∧ _x28 = _x35 | |
l1 | 5 | l3: | x1 = _x42 ∧ x2 = _x43 ∧ x3 = _x44 ∧ x4 = _x45 ∧ x5 = _x46 ∧ x6 = _x47 ∧ x7 = _x48 ∧ x1 = _x49 ∧ x2 = _x50 ∧ x3 = _x51 ∧ x4 = _x52 ∧ x5 = _x53 ∧ x6 = _x54 ∧ x7 = _x55 ∧ _x48 = _x55 ∧ _x47 = _x54 ∧ _x46 = _x53 ∧ _x44 = _x51 ∧ _x43 = _x50 ∧ _x42 = _x49 ∧ _x52 = _x48 ∧ _x42 ≤ _x43 | |
l1 | 6 | l2: | x1 = _x56 ∧ x2 = _x57 ∧ x3 = _x58 ∧ x4 = _x59 ∧ x5 = _x60 ∧ x6 = _x61 ∧ x7 = _x62 ∧ x1 = _x63 ∧ x2 = _x64 ∧ x3 = _x65 ∧ x4 = _x66 ∧ x5 = _x67 ∧ x6 = _x68 ∧ x7 = _x69 ∧ _x62 = _x69 ∧ _x61 = _x68 ∧ _x60 = _x67 ∧ _x59 = _x66 ∧ _x58 = _x65 ∧ _x56 = _x63 ∧ _x64 = 1 + _x57 ∧ 1 + _x57 ≤ _x56 | |
l5 | 7 | l0: | x1 = _x70 ∧ x2 = _x71 ∧ x3 = _x72 ∧ x4 = _x73 ∧ x5 = _x74 ∧ x6 = _x75 ∧ x7 = _x76 ∧ x1 = _x77 ∧ x2 = _x78 ∧ x3 = _x79 ∧ x4 = _x80 ∧ x5 = _x81 ∧ x6 = _x82 ∧ x7 = _x83 ∧ _x76 = _x83 ∧ _x75 = _x82 ∧ _x74 = _x81 ∧ _x73 = _x80 ∧ _x72 = _x79 ∧ _x71 = _x78 ∧ _x70 = _x77 |
l5 | l5 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
l4 | l4 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
l1 | l1 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
l0 | l0 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
l2 | l2 | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2⋅x2 + 2⋅x1 |
: | 2⋅x1 − 2⋅x2 + 1 |
We remove transition
using the following ranking functions, which are bounded by 0.: | 0 |
: | −1 |
There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.