by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 − x_6_0 ≤ 0 ∧ 3 − w_5_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 − x_6_0 ≤ 0 ∧ −2 + w_5_0 ≤ 0 ∧ −1 − x_6_0 + x_6_post ≤ 0 ∧ 1 + x_6_0 − x_6_post ≤ 0 ∧ −1 − w_5_0 + w_5_post ≤ 0 ∧ 1 + w_5_0 − w_5_post ≤ 0 ∧ w_5_0 − w_5_post ≤ 0 ∧ − w_5_0 + w_5_post ≤ 0 ∧ x_6_0 − x_6_post ≤ 0 ∧ − x_6_0 + x_6_post ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
2 | 2 | 0: | − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
0 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + x_6_0 ≤ 0 ∧ −1 − x_6_0 + x_6_post ≤ 0 ∧ 1 + x_6_0 − x_6_post ≤ 0 ∧ −1 − w_5_0 + w_5_post ≤ 0 ∧ 1 + w_5_0 − w_5_post ≤ 0 ∧ w_5_0 − w_5_post ≤ 0 ∧ − w_5_0 + w_5_post ≤ 0 ∧ x_6_0 − x_6_post ≤ 0 ∧ − x_6_0 + x_6_post ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
3 | 4 | 0: | − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
4 | 5 | 0: | − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
5 | 6 | 4: | − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
0 | 7 | : | − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.5: | 0 |
4: | 0 |
0: | 0 |
2: | 0 |
3: | 0 |
1: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −11 |
8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − x_6_post + x_6_post ≤ 0 ∧ x_6_post − x_6_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − w_5_post + w_5_post ≤ 0 ∧ w_5_post − w_5_post ≤ 0 ∧ − w_5_0 + w_5_0 ≤ 0 ∧ w_5_0 − w_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , }.We remove transition
using the following ranking functions, which are bounded by −12.: | −2 − 4⋅w_5_0 |
: | −4⋅w_5_0 |
: | −4⋅w_5_0 |
: | −3 − 4⋅w_5_0 |
: | −1 − 4⋅w_5_0 |
8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −5.: | −1 − 3⋅x_6_0 |
: | 1 − 3⋅x_6_0 |
: | 1 − 3⋅x_6_0 |
: | −1 − 3⋅x_6_0 |
: | −3⋅x_6_0 |
8 | lexWeak[ [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
10 | lexWeak[ [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0] , [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 8, 10, using the following ranking functions, which are bounded by −3.
: | −2 |
: | 0 |
: | 0 |
: | −3 |
: | −1 |
8 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −1 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert