by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_5_0 ≤ 0 ∧ −1 − i_5_0 + i_5_1 ≤ 0 ∧ 1 + i_5_0 − i_5_1 ≤ 0 ∧ 2 − i_5_1 + i_5_post ≤ 0 ∧ −2 + i_5_1 − i_5_post ≤ 0 ∧ i_5_0 − i_5_post ≤ 0 ∧ − i_5_0 + i_5_post ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
1 | 1 | 0: | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_5_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 | |
3 | 3 | 0: | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
4 | 4 | 3: | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | 1 + i_5_0 ≤ 0 |
3: | TRUE |
4: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | 1 + i_5_0 ≤ 0 | ||
3 | (3) | TRUE | ||
4 | (4) | TRUE |
0 | 0 1 | |
0 | 2 2 | |
1 | 1 0 | |
3 | 3 0 | |
4 | 4 3 |
0 | 5 | : | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.4: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −11 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −4.: | −2 + 4⋅i_5_0 |
: | 4⋅i_5_0 |
: | −3 + 4⋅i_5_0 |
: | −1 + 4⋅i_5_0 |
We remove transitions 6, 8, using the following ranking functions, which are bounded by −3.
: | −2 |
: | 0 |
: | −3 |
: | −1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert