by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_5_0 ≤ 0 ∧ −1 − i_5_0 + i_5_1 ≤ 0 ∧ 1 + i_5_0 − i_5_1 ≤ 0 ∧ 2 − i_5_1 + i_5_post ≤ 0 ∧ −2 + i_5_1 − i_5_post ≤ 0 ∧ i_5_0 − i_5_post ≤ 0 ∧ − i_5_0 + i_5_post ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 1 | 1 | 0: | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_5_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 | |
| 3 | 3 | 0: | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 4 | 4 | 3: | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | 1 + i_5_0 ≤ 0 | 
| 3: | TRUE | 
| 4: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | 1 + i_5_0 ≤ 0 | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | 
| 0 | 0 1 | |
| 0 | 2 2 | |
| 1 | 1 0 | |
| 3 | 3 0 | |
| 4 | 4 3 | 
| 0 | 5 | : | − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | 
We remove transitions , , using the following ranking functions, which are bounded by −13.
| 4: | 0 | 
| 3: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| : | −5 | 
| : | −6 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −11 | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_1 + i_5_1 ≤ 0 ∧ i_5_1 − i_5_1 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by −4.
| : | −2 + 4⋅i_5_0 | 
| : | 4⋅i_5_0 | 
| : | −3 + 4⋅i_5_0 | 
| : | −1 + 4⋅i_5_0 | 
We remove transitions 6, 8, using the following ranking functions, which are bounded by −3.
| : | −2 | 
| : | 0 | 
| : | −3 | 
| : | −1 | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert