by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_0 ≤ 0 ∧ Result_0 − Result_post ≤ 0 ∧ − Result_0 + Result_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 | |
0 | 1 | 2: | 1 + x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
2 | 2 | 3: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
3 | 3 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ −1 − y_0 + y_post ≤ 0 ∧ 1 + y_0 − y_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
4 | 4 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
0 | 5 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_0 ≤ 0 ∧ 1 + y_0 ≤ 0 ∧ −1 − y_0 ≤ 0 ∧ −1 − y_0 + y_post ≤ 0 ∧ 1 + y_0 − y_post ≤ 0 ∧ ___const_99_0 − x_0 + x_post ≤ 0 ∧ − ___const_99_0 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
5 | 6 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
6 | 7 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
7 | 8 | 6: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 |
0 | 9 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.7: | 0 |
6: | 0 |
0: | 0 |
2: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
1: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −11 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ___const_99_0 + ___const_99_0 ≤ 0 ∧ ___const_99_0 − ___const_99_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , }.We remove transition
using the following ranking functions, which are bounded by 7.: | 1 − 8⋅y_0 |
: | −1 − 8⋅y_0 |
: | −2 − 8⋅y_0 |
: | 3 − 8⋅y_0 |
: | 3 − 8⋅y_0 |
: | −8⋅y_0 |
: | 2 − 8⋅y_0 |
10 | lexWeak[ [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexWeak[ [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by 1.: | −2 − 5⋅x_0 |
: | −4 − 5⋅x_0 |
: | −5 − 5⋅x_0 |
: | −5⋅x_0 |
: | −5⋅x_0 |
: | −3 − 5⋅x_0 |
: | −1 − 5⋅x_0 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] ] |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 10, , , , using the following ranking functions, which are bounded by −3.
: | −2 |
: | 2 |
: | 1 |
: | 0 |
: | 0 |
: | −3 |
: | −1 |
10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 12 using the following ranking functions, which are bounded by −1.
: | −1 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
12 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert