by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_0 ≤ 0 ∧ Result_0 − Result_post ≤ 0 ∧ − Result_0 + Result_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 0 | 1 | 2: | 1 + x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 2 | 2 | 3: | 2 + y_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 2 | 3 | 3: | − y_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 3 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ −1 − y_0 + y_post ≤ 0 ∧ 1 + y_0 − y_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 4 | 5 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 0 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_0 ≤ 0 ∧ 1 + y_0 ≤ 0 ∧ −1 − y_0 ≤ 0 ∧ −1 − y_0 + y_post ≤ 0 ∧ 1 + y_0 − y_post ≤ 0 ∧ 99 − x_0 + x_post ≤ 0 ∧ −99 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 5 | 7 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 6 | 8 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 | |
| 7 | 9 | 6: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 |
| 0 | 10 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0 |
We remove transitions , , using the following ranking functions, which are bounded by −13.
| 7: | 0 |
| 6: | 0 |
| 0: | 0 |
| 2: | 0 |
| 3: | 0 |
| 4: | 0 |
| 5: | 0 |
| 1: | 0 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −11 |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − Result_post + Result_post ≤ 0 ∧ Result_post − Result_post ≤ 0 ∧ − Result_0 + Result_0 ≤ 0 ∧ Result_0 − Result_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We remove transitions , using the following ranking functions, which are bounded by 2.
| : | −2 − 6⋅y_0 |
| : | −4 − 6⋅y_0 |
| : | −5 − 6⋅y_0 |
| : | −6⋅y_0 |
| : | −6⋅y_0 |
| : | −3 − 6⋅y_0 |
| : | −1 − 6⋅y_0 |
| 11 | lexWeak[ [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexWeak[ [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] , [6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition using the following ranking functions, which are bounded by 2.
| : | −2 − 5⋅x_0 |
| : | −3 − 5⋅x_0 |
| : | −4 − 5⋅x_0 |
| : | −5⋅x_0 |
| : | −5⋅x_0 |
| : | −2 − 5⋅x_0 |
| : | −1 − 5⋅x_0 |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0] ] |
| 13 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0] ] |
We remove transitions 11, 13, , , , using the following ranking functions, which are bounded by −3.
| : | −2 |
| : | 2 |
| : | 1 |
| : | 0 |
| : | 0 |
| : | −3 |
| : | −1 |
| 11 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert