by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − x_5_0 + x_5_post ≤ 0 ∧ 1 + x_5_0 − x_5_post ≤ 0 ∧ −1 − y_6_0 + y_6_post ≤ 0 ∧ 1 + y_6_0 − y_6_post ≤ 0 ∧ 1 − z_7_0 + z_7_post ≤ 0 ∧ −1 + z_7_0 − z_7_post ≤ 0 ∧ x_5_0 − x_5_post ≤ 0 ∧ − x_5_0 + x_5_post ≤ 0 ∧ y_6_0 − y_6_post ≤ 0 ∧ − y_6_0 + y_6_post ≤ 0 ∧ z_7_0 − z_7_post ≤ 0 ∧ − z_7_0 + z_7_post ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
1 | 1 | 0: | − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
2 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_5_0 + y_6_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 | |
2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_5_0 − y_6_0 ≤ 0 ∧ − y_6_0 + z_7_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 | |
2 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_5_0 − y_6_0 ≤ 0 ∧ 1 + y_6_0 − z_7_0 ≤ 0 ∧ 1 + x_5_0 − z_7_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 | |
2 | 5 | 0: | 1 + x_5_0 − y_6_0 ≤ 0 ∧ 1 + y_6_0 − z_7_0 ≤ 0 ∧ − x_5_0 + z_7_0 ≤ 0 ∧ − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
4 | 6 | 2: | − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
0 | 7 | : | − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −13.4: | 0 |
2: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − z_7_post + z_7_post ≤ 0 ∧ z_7_post − z_7_post ≤ 0 ∧ − z_7_0 + z_7_0 ≤ 0 ∧ z_7_0 − z_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
0: | 1 ≤ 0 |
1: | 1 ≤ 0 |
2: | TRUE |
3: | TRUE |
4: | TRUE |
: | 1 ≤ 0 |
: | 1 ≤ 0 |
: | 1 ≤ 0 |
: | 1 ≤ 0 |
The invariants are proved as follows.
0 | (4) | TRUE | ||
1 | (2) | TRUE | ||
2 | (3) | TRUE | ||
3 | (3) | TRUE | ||
4 | (3) | TRUE | ||
5 | (0) | 1 ≤ 0 |
2 | → 4 | |
3 | → 4 |
0 | 6 1 | |
1 | 2 2 | |
1 | 3 3 | |
1 | 4 4 | |
1 | 5 5 |
We remove transition 8 using the following ranking functions, which are bounded by −6.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert