LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
0 7 0: z_7_post + z_7_post ≤ 0z_7_postz_7_post ≤ 0z_7_0 + z_7_0 ≤ 0z_7_0z_7_0 ≤ 0y_6_post + y_6_post ≤ 0y_6_posty_6_post ≤ 0y_6_0 + y_6_0 ≤ 0y_6_0y_6_0 ≤ 0x_5_post + x_5_post ≤ 0x_5_postx_5_post ≤ 0x_5_0 + x_5_0 ≤ 0x_5_0x_5_0 ≤ 0Result_4_post + Result_4_post ≤ 0Result_4_postResult_4_post ≤ 0Result_4_0 + Result_4_0 ≤ 0Result_4_0Result_4_0 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 2, 3, 4, 5, 6 using the following ranking functions, which are bounded by −13.

4: 0
2: 0
3: 0
0: 0
1: 0
4: −5
2: −6
3: −7
0: −8
1: −8
0_var_snapshot: −8
0*: −8

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0* 10 0: z_7_post + z_7_post ≤ 0z_7_postz_7_post ≤ 0z_7_0 + z_7_0 ≤ 0z_7_0z_7_0 ≤ 0y_6_post + y_6_post ≤ 0y_6_posty_6_post ≤ 0y_6_0 + y_6_0 ≤ 0y_6_0y_6_0 ≤ 0x_5_post + x_5_post ≤ 0x_5_postx_5_post ≤ 0x_5_0 + x_5_0 ≤ 0x_5_0x_5_0 ≤ 0Result_4_post + Result_4_post ≤ 0Result_4_postResult_4_post ≤ 0Result_4_0 + Result_4_0 ≤ 0Result_4_0Result_4_0 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

0 8 0_var_snapshot: z_7_post + z_7_post ≤ 0z_7_postz_7_post ≤ 0z_7_0 + z_7_0 ≤ 0z_7_0z_7_0 ≤ 0y_6_post + y_6_post ≤ 0y_6_posty_6_post ≤ 0y_6_0 + y_6_0 ≤ 0y_6_0y_6_0 ≤ 0x_5_post + x_5_post ≤ 0x_5_postx_5_post ≤ 0x_5_0 + x_5_0 ≤ 0x_5_0x_5_0 ≤ 0Result_4_post + Result_4_post ≤ 0Result_4_postResult_4_post ≤ 0Result_4_0 + Result_4_0 ≤ 0Result_4_0Result_4_0 ≤ 0

5 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

5.1 SCC Subproblem 1/1

Here we consider the SCC { 0, 1, 0_var_snapshot, 0* }.

5.1.1 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

5.1.1.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 7.

5.1.1.1.1 Invariant Updates

The following invariants are asserted.

0: 1 ≤ 0
1: 1 ≤ 0
2: TRUE
3: TRUE
4: TRUE
0: 1 ≤ 0
1: 1 ≤ 0
0_var_snapshot: 1 ≤ 0
0*: 1 ≤ 0

The invariants are proved as follows.

IMPACT Invariant Proof

5.1.1.1.2 Transition Removal

We remove transition 8 using the following ranking functions, which are bounded by −6.

0: −1
1: −2
0_var_snapshot: −3
0*: −4

5.1.1.1.3 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert