by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 10 − x_6_0 ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ ____cil_tmp4_8_post − ____retres3_7_post ≤ 0 ∧ − ____cil_tmp4_8_post + ____retres3_7_post ≤ 0 ∧ Result_4_post − ____cil_tmp4_8_post ≤ 0 ∧ − Result_4_post + ____cil_tmp4_8_post ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 | |
| 0 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −9 + x_6_0 ≤ 0 ∧ −100 + i_5_0 ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ ____cil_tmp4_8_post − ____retres3_7_post ≤ 0 ∧ − ____cil_tmp4_8_post + ____retres3_7_post ≤ 0 ∧ Result_4_post − ____cil_tmp4_8_post ≤ 0 ∧ − Result_4_post + ____cil_tmp4_8_post ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 | |
| 0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −9 + x_6_0 ≤ 0 ∧ 101 − i_5_0 ≤ 0 ∧ 1 − i_5_0 + i_5_post ≤ 0 ∧ −1 + i_5_0 − i_5_post ≤ 0 ∧ i_5_0 − i_5_post ≤ 0 ∧ − i_5_0 + i_5_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 2 | 3 | 0: | − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1000 + i_5_post ≤ 0 ∧ 1000 − i_5_post ≤ 0 ∧ i_5_0 − i_5_post ≤ 0 ∧ − i_5_0 + i_5_post ≤ 0 ∧ − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 4 | 5 | 3: | − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 |
| 2: | TRUE |
| 3: | TRUE |
| 4: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE |
| 0 | 0 1 | |
| 0 | 1 1 | |
| 0 | 2 2 | |
| 2 | 3 0 | |
| 3 | 4 0 | |
| 4 | 5 3 |
| 0 | 6 | : | − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions , , , using the following ranking functions, which are bounded by −13.
| 4: | 0 |
| 3: | 0 |
| 0: | 0 |
| 2: | 0 |
| 1: | 0 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −11 |
| 7 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − x_6_0 + x_6_0 ≤ 0 ∧ x_6_0 − x_6_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 400.
| : | −2 + 4⋅i_5_0 |
| : | 4⋅i_5_0 |
| : | −3 + 4⋅i_5_0 |
| : | −1 + 4⋅i_5_0 |
| 7 | lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 9 | lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 7, 9 using the following ranking functions, which are bounded by −2.
| : | −1 |
| : | 1 |
| : | −2 |
| : | 0 |
| 7 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 9 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition using the following ranking functions, which are bounded by −1.
| : | 0 |
| : | 0 |
| : | 0 |
| : | −1 |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert