by T2Cert
0 | 0 | 1: | − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
2 | 1 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i_5_0 ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ ____cil_tmp4_8_post − ____retres3_7_post ≤ 0 ∧ − ____cil_tmp4_8_post + ____retres3_7_post ≤ 0 ∧ Result_4_post − ____cil_tmp4_8_post ≤ 0 ∧ − Result_4_post + ____cil_tmp4_8_post ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_post ≤ 0 ∧ − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 | |
2 | 2 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i_5_0 ≤ 0 ∧ − d_6_0 − i_5_0 + i_5_post ≤ 0 ∧ d_6_0 + i_5_0 − i_5_post ≤ 0 ∧ i_5_0 − i_5_post ≤ 0 ∧ − i_5_0 + i_5_post ≤ 0 ∧ − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
4 | 3 | 2: | − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
1 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − d_6_0 ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ ____cil_tmp4_8_post − ____retres3_7_post ≤ 0 ∧ − ____cil_tmp4_8_post + ____retres3_7_post ≤ 0 ∧ Result_4_post − ____cil_tmp4_8_post ≤ 0 ∧ − Result_4_post + ____cil_tmp4_8_post ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_post ≤ 0 ∧ − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 | |
1 | 5 | 2: | 1 + d_6_0 ≤ 0 ∧ − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
3 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ ____retres1_9_post ≤ 0 ∧ − ____retres1_9_post ≤ 0 ∧ ____cil_tmp2_10_post − ____retres1_9_post ≤ 0 ∧ − ____cil_tmp2_10_post + ____retres1_9_post ≤ 0 ∧ Result_4_post − ____cil_tmp2_10_post ≤ 0 ∧ − Result_4_post + ____cil_tmp2_10_post ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_post ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_post ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 | |
6 | 7 | 0: | − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | TRUE |
3: | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 |
4: | TRUE |
5: | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 ∧ ____cil_tmp2_10_post ≤ 0 ∧ ____retres1_9_post ≤ 0 ∧ − ____retres1_9_post ≤ 0 ∧ ____cil_tmp2_10_0 ≤ 0 ∧ ____retres1_9_0 ≤ 0 ∧ − ____retres1_9_0 ≤ 0 |
6: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | TRUE | ||
3 | (3) | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 | ||
4 | (4) | TRUE | ||
5 | (5) | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 ∧ ____cil_tmp2_10_post ≤ 0 ∧ ____retres1_9_post ≤ 0 ∧ − ____retres1_9_post ≤ 0 ∧ ____cil_tmp2_10_0 ≤ 0 ∧ ____retres1_9_0 ≤ 0 ∧ − ____retres1_9_0 ≤ 0 | ||
6 | (6) | TRUE |
0 | 0 1 | |
1 | 4 3 | |
1 | 5 2 | |
2 | 1 3 | |
2 | 2 4 | |
3 | 6 5 | |
4 | 3 2 | |
6 | 7 0 |
2 | 8 | : | − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions
, , , , , using the following ranking functions, which are bounded by −17.6: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
4: | 0 |
3: | 0 |
5: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −10 |
: | −10 |
: | −10 |
: | −10 |
: | −14 |
: | −15 |
9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − ____retres1_9_post + ____retres1_9_post ≤ 0 ∧ ____retres1_9_post − ____retres1_9_post ≤ 0 ∧ − ____retres1_9_0 + ____retres1_9_0 ≤ 0 ∧ ____retres1_9_0 − ____retres1_9_0 ≤ 0 ∧ − ____cil_tmp2_10_post + ____cil_tmp2_10_post ≤ 0 ∧ ____cil_tmp2_10_post − ____cil_tmp2_10_post ≤ 0 ∧ − ____cil_tmp2_10_0 + ____cil_tmp2_10_0 ≤ 0 ∧ ____cil_tmp2_10_0 − ____cil_tmp2_10_0 ≤ 0 ∧ − i_5_post + i_5_post ≤ 0 ∧ i_5_post − i_5_post ≤ 0 ∧ − d_6_0 + d_6_0 ≤ 0 ∧ d_6_0 − d_6_0 ≤ 0 ∧ − i_5_0 + i_5_0 ≤ 0 ∧ i_5_0 − i_5_0 ≤ 0 ∧ − ____retres3_7_post + ____retres3_7_post ≤ 0 ∧ ____retres3_7_post − ____retres3_7_post ≤ 0 ∧ − ____retres3_7_0 + ____retres3_7_0 ≤ 0 ∧ ____retres3_7_0 − ____retres3_7_0 ≤ 0 ∧ − ____cil_tmp4_8_post + ____cil_tmp4_8_post ≤ 0 ∧ ____cil_tmp4_8_post − ____cil_tmp4_8_post ≤ 0 ∧ − ____cil_tmp4_8_0 + ____cil_tmp4_8_0 ≤ 0 ∧ ____cil_tmp4_8_0 − ____cil_tmp4_8_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_2_____retres1_9_post is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____retres1_9_post ≤ ____retres1_9_post ∧ ____retres1_9_post ≤ __snapshot_2_____retres1_9_post |
11: | __snapshot_2_____retres1_9_post ≤ __snapshot_2_____retres1_9_post ∧ __snapshot_2_____retres1_9_post ≤ __snapshot_2_____retres1_9_post |
: | __snapshot_2_____retres1_9_post ≤ __snapshot_2_____retres1_9_post ∧ __snapshot_2_____retres1_9_post ≤ __snapshot_2_____retres1_9_post |
: | __snapshot_2_____retres1_9_post ≤ __snapshot_2_____retres1_9_post ∧ __snapshot_2_____retres1_9_post ≤ __snapshot_2_____retres1_9_post |
The new variable __snapshot_2_____retres1_9_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____retres1_9_0 ≤ ____retres1_9_0 ∧ ____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 |
11: | __snapshot_2_____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 ∧ __snapshot_2_____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 |
: | __snapshot_2_____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 ∧ __snapshot_2_____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 |
: | __snapshot_2_____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 ∧ __snapshot_2_____retres1_9_0 ≤ __snapshot_2_____retres1_9_0 |
The new variable __snapshot_2_____cil_tmp2_10_post is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____cil_tmp2_10_post ≤ ____cil_tmp2_10_post ∧ ____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post |
11: | __snapshot_2_____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post ∧ __snapshot_2_____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post |
: | __snapshot_2_____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post ∧ __snapshot_2_____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post |
: | __snapshot_2_____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post ∧ __snapshot_2_____cil_tmp2_10_post ≤ __snapshot_2_____cil_tmp2_10_post |
The new variable __snapshot_2_____cil_tmp2_10_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____cil_tmp2_10_0 ≤ ____cil_tmp2_10_0 ∧ ____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 |
11: | __snapshot_2_____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 ∧ __snapshot_2_____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 |
: | __snapshot_2_____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 ∧ __snapshot_2_____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 |
: | __snapshot_2_____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 ∧ __snapshot_2_____cil_tmp2_10_0 ≤ __snapshot_2_____cil_tmp2_10_0 |
The new variable __snapshot_2_i_5_post is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_i_5_post ≤ i_5_post ∧ i_5_post ≤ __snapshot_2_i_5_post |
11: | __snapshot_2_i_5_post ≤ __snapshot_2_i_5_post ∧ __snapshot_2_i_5_post ≤ __snapshot_2_i_5_post |
: | __snapshot_2_i_5_post ≤ __snapshot_2_i_5_post ∧ __snapshot_2_i_5_post ≤ __snapshot_2_i_5_post |
: | __snapshot_2_i_5_post ≤ __snapshot_2_i_5_post ∧ __snapshot_2_i_5_post ≤ __snapshot_2_i_5_post |
The new variable __snapshot_2_d_6_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_d_6_0 ≤ d_6_0 ∧ d_6_0 ≤ __snapshot_2_d_6_0 |
11: | __snapshot_2_d_6_0 ≤ __snapshot_2_d_6_0 ∧ __snapshot_2_d_6_0 ≤ __snapshot_2_d_6_0 |
: | __snapshot_2_d_6_0 ≤ __snapshot_2_d_6_0 ∧ __snapshot_2_d_6_0 ≤ __snapshot_2_d_6_0 |
: | __snapshot_2_d_6_0 ≤ __snapshot_2_d_6_0 ∧ __snapshot_2_d_6_0 ≤ __snapshot_2_d_6_0 |
The new variable __snapshot_2_i_5_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_i_5_0 ≤ i_5_0 ∧ i_5_0 ≤ __snapshot_2_i_5_0 |
11: | __snapshot_2_i_5_0 ≤ __snapshot_2_i_5_0 ∧ __snapshot_2_i_5_0 ≤ __snapshot_2_i_5_0 |
: | __snapshot_2_i_5_0 ≤ __snapshot_2_i_5_0 ∧ __snapshot_2_i_5_0 ≤ __snapshot_2_i_5_0 |
: | __snapshot_2_i_5_0 ≤ __snapshot_2_i_5_0 ∧ __snapshot_2_i_5_0 ≤ __snapshot_2_i_5_0 |
The new variable __snapshot_2_____retres3_7_post is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____retres3_7_post ≤ ____retres3_7_post ∧ ____retres3_7_post ≤ __snapshot_2_____retres3_7_post |
11: | __snapshot_2_____retres3_7_post ≤ __snapshot_2_____retres3_7_post ∧ __snapshot_2_____retres3_7_post ≤ __snapshot_2_____retres3_7_post |
: | __snapshot_2_____retres3_7_post ≤ __snapshot_2_____retres3_7_post ∧ __snapshot_2_____retres3_7_post ≤ __snapshot_2_____retres3_7_post |
: | __snapshot_2_____retres3_7_post ≤ __snapshot_2_____retres3_7_post ∧ __snapshot_2_____retres3_7_post ≤ __snapshot_2_____retres3_7_post |
The new variable __snapshot_2_____retres3_7_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____retres3_7_0 ≤ ____retres3_7_0 ∧ ____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 |
11: | __snapshot_2_____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 ∧ __snapshot_2_____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 |
: | __snapshot_2_____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 ∧ __snapshot_2_____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 |
: | __snapshot_2_____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 ∧ __snapshot_2_____retres3_7_0 ≤ __snapshot_2_____retres3_7_0 |
The new variable __snapshot_2_____cil_tmp4_8_post is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____cil_tmp4_8_post ≤ ____cil_tmp4_8_post ∧ ____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post |
11: | __snapshot_2_____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post ∧ __snapshot_2_____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post |
: | __snapshot_2_____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post ∧ __snapshot_2_____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post |
: | __snapshot_2_____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post ∧ __snapshot_2_____cil_tmp4_8_post ≤ __snapshot_2_____cil_tmp4_8_post |
The new variable __snapshot_2_____cil_tmp4_8_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_____cil_tmp4_8_0 ≤ ____cil_tmp4_8_0 ∧ ____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 |
11: | __snapshot_2_____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 ∧ __snapshot_2_____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 |
: | __snapshot_2_____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 ∧ __snapshot_2_____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 |
: | __snapshot_2_____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 ∧ __snapshot_2_____cil_tmp4_8_0 ≤ __snapshot_2_____cil_tmp4_8_0 |
The new variable __snapshot_2_Result_4_post is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_Result_4_post ≤ Result_4_post ∧ Result_4_post ≤ __snapshot_2_Result_4_post |
11: | __snapshot_2_Result_4_post ≤ __snapshot_2_Result_4_post ∧ __snapshot_2_Result_4_post ≤ __snapshot_2_Result_4_post |
: | __snapshot_2_Result_4_post ≤ __snapshot_2_Result_4_post ∧ __snapshot_2_Result_4_post ≤ __snapshot_2_Result_4_post |
: | __snapshot_2_Result_4_post ≤ __snapshot_2_Result_4_post ∧ __snapshot_2_Result_4_post ≤ __snapshot_2_Result_4_post |
The new variable __snapshot_2_Result_4_0 is introduced. The transition formulas are extended as follows:
9: | __snapshot_2_Result_4_0 ≤ Result_4_0 ∧ Result_4_0 ≤ __snapshot_2_Result_4_0 |
11: | __snapshot_2_Result_4_0 ≤ __snapshot_2_Result_4_0 ∧ __snapshot_2_Result_4_0 ≤ __snapshot_2_Result_4_0 |
: | __snapshot_2_Result_4_0 ≤ __snapshot_2_Result_4_0 ∧ __snapshot_2_Result_4_0 ≤ __snapshot_2_Result_4_0 |
: | __snapshot_2_Result_4_0 ≤ __snapshot_2_Result_4_0 ∧ __snapshot_2_Result_4_0 ≤ __snapshot_2_Result_4_0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | 1 + d_6_0 ≤ 0 |
3: | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 |
4: | 1 + d_6_0 ≤ 0 |
5: | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 ∧ ____cil_tmp2_10_post ≤ 0 ∧ ____retres1_9_post ≤ 0 ∧ − ____retres1_9_post ≤ 0 ∧ ____cil_tmp2_10_0 ≤ 0 ∧ ____retres1_9_0 ≤ 0 ∧ − ____retres1_9_0 ≤ 0 |
6: | TRUE |
: | 1 + d_6_0 ≤ 0 ∨ 1 + d_6_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ − __snapshot_2_i_5_0 ≤ 0 |
: | 1 + d_6_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ − __snapshot_2_i_5_0 ≤ 0 |
: | 1 + d_6_0 ≤ 0 ∧ − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + d_6_0 + i_5_0 ≤ 0 |
: | 1 + d_6_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ − __snapshot_2_i_5_0 ≤ 0 |
The invariants are proved as follows.
0 | (6) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | TRUE | ||
3 | (3) | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 | ||
4 | (2) | 1 + d_6_0 ≤ 0 | ||
5 | (3) | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 | ||
6 | (4) | 1 + d_6_0 ≤ 0 | ||
7 | ( | )1 + d_6_0 ≤ 0 | ||
8 | ( | )1 + d_6_0 ≤ 0 ∧ − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + d_6_0 + i_5_0 ≤ 0 | ||
13 | (2) | 1 + d_6_0 ≤ 0 | ||
17 | ( | )1 + d_6_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ − __snapshot_2_i_5_0 ≤ 0 | ||
18 | ( | )1 + d_6_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ − __snapshot_2_i_5_0 ≤ 0 | ||
19 | ( | )1 + d_6_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ − __snapshot_2_i_5_0 ≤ 0 | ||
20 | ( | )1 + d_6_0 ≤ 0 ∧ − __snapshot_2_i_5_0 + i_5_0 ≤ 0 ∧ 1 − __snapshot_2_i_5_0 + d_6_0 + i_5_0 ≤ 0 | ||
25 | (5) | Result_4_post ≤ 0 ∧ ____cil_tmp4_8_post ≤ 0 ∧ ____retres3_7_post ≤ 0 ∧ − ____retres3_7_post ≤ 0 ∧ Result_4_0 ≤ 0 ∧ ____cil_tmp4_8_0 ≤ 0 ∧ ____retres3_7_0 ≤ 0 ∧ − ____retres3_7_0 ≤ 0 ∧ ____cil_tmp2_10_post ≤ 0 ∧ ____retres1_9_post ≤ 0 ∧ − ____retres1_9_post ≤ 0 ∧ ____cil_tmp2_10_0 ≤ 0 ∧ ____retres1_9_0 ≤ 0 ∧ − ____retres1_9_0 ≤ 0 |
3 | → 5 |
Hint:
distribute conclusion
|
||||||||||||||||
13 | → 4 | Hint: [1] | ||||||||||||||||
20 | → 8 |
Hint:
distribute conclusion
|
0 | 7 1 | Hint: auto | ||||||||||||||||||||||||||||
1 | 0 2 | Hint: auto | ||||||||||||||||||||||||||||
2 | 4 3 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
2 | 5 4 | Hint: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||||||||||||||||||||||||
4 | 1 5 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
4 | 2 6 | Hint: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||||||||||||||||||||||||
4 | 8 7 | Hint: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||||||||||||||||||||||||
5 | 6 25 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
6 | 3 13 | Hint: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||||||||||||||||||||||||
7 | 9 8 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
8 | 17 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
17 | 18 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
18 | 11 19 |
Hint:
distribute conclusion
|
||||||||||||||||||||||||||||
19 | 9 20 |
Hint:
distribute conclusion
|
We remove transition 11 using the following ranking functions, which are bounded by −2.
: | i_5_0 |
: | __snapshot_2_i_5_0 |
: | __snapshot_2_i_5_0 |
: | __snapshot_2_i_5_0 |
9 |
distribute assertion
|
||||
11 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 9 using the following ranking functions, which are bounded by −6.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
9 |
distribute assertion
|
||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert