by T2Cert
0 | 0 | 1: | 1 + x_5_0 − y_6_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
1 | 1 | 2: | 1 + b_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
1 | 2 | 2: | 1 − b_7_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ 1 − y_6_0 + y_6_post ≤ 0 ∧ −1 + y_6_0 − y_6_post ≤ 0 ∧ b_7_0 − b_7_post ≤ 0 ∧ − b_7_0 + b_7_post ≤ 0 ∧ y_6_0 − y_6_post ≤ 0 ∧ − y_6_0 + y_6_post ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
0 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_5_0 + y_6_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 | |
5 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ b_7_0 − b_7_post ≤ 0 ∧ − b_7_0 + b_7_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
3 | 6 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_5_0 − y_6_0 ≤ 0 ∧ b_7_0 ≤ 0 ∧ − b_7_0 ≤ 0 ∧ −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 − x_5_0 + x_5_post ≤ 0 ∧ 1 + x_5_0 − x_5_post ≤ 0 ∧ b_7_0 − b_7_post ≤ 0 ∧ − b_7_0 + b_7_post ≤ 0 ∧ x_5_0 − x_5_post ≤ 0 ∧ − x_5_0 + x_5_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
3 | 7 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_5_0 + y_6_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 | |
6 | 8 | 5: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
The following invariants are asserted.
0: | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 |
1: | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 |
2: | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ 1 − b_7_0 ≤ 0 |
3: | b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ b_7_0 ≤ 0 ∧ − b_7_0 ≤ 0 |
4: | − b_7_post ≤ 0 ∧ − b_7_0 ≤ 0 |
5: | TRUE |
6: | TRUE |
The invariants are proved as follows.
0 | (0) | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | ||
1 | (1) | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | ||
2 | (2) | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ 1 − b_7_0 ≤ 0 | ||
3 | (3) | b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ b_7_0 ≤ 0 ∧ − b_7_0 ≤ 0 | ||
4 | (4) | − b_7_post ≤ 0 ∧ − b_7_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE |
0 | 0 1 | |
0 | 4 4 | |
1 | 1 2 | |
1 | 2 2 | |
2 | 3 3 | |
3 | 6 0 | |
3 | 7 4 | |
5 | 5 3 | |
6 | 8 5 |
3 | 9 | : | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 |
We remove transitions
, , , using the following ranking functions, which are bounded by −13.6: | 0 |
5: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
3: | 0 |
4: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −11 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , }.We remove transition
using the following ranking functions, which are bounded by 2.: | 2 − 3⋅x_5_0 + 3⋅y_6_0 |
: | −3⋅x_5_0 + 3⋅y_6_0 |
: | −1 + b_7_0 − 3⋅x_5_0 + 3⋅y_6_0 |
: | 1 − 3⋅x_5_0 + 3⋅y_6_0 |
: | −3⋅x_5_0 + 3⋅y_6_0 |
: | 2 − 3⋅x_5_0 + 3⋅y_6_0 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 12, , , , using the following ranking functions, which are bounded by −3.
: | b_7_0 + b_7_post |
: | b_7_post |
: | 0 |
: | −2 |
: | −3 |
: | −1 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 10 using the following ranking functions, which are bounded by −1.
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −1 |
: | 0 |
10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert