by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i4_0 ≤ 0 ∧ 1 − i4_0 + i4_post ≤ 0 ∧ −1 + i4_0 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
1 | 1 | 0: | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i3_0 + n_0 ≤ 0 ∧ − i3_0 + i4_post ≤ 0 ∧ i3_0 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i3_0 − n_0 ≤ 0 ∧ −1 − i3_0 + i3_post ≤ 0 ∧ 1 + i3_0 − i3_post ≤ 0 ∧ i3_0 − i3_post ≤ 0 ∧ − i3_0 + i3_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
3 | 4 | 2: | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
4 | 5 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i2_0 ≤ 0 ∧ − i2_0 + i3_post ≤ 0 ∧ i2_0 − i3_post ≤ 0 ∧ i3_0 − i3_post ≤ 0 ∧ − i3_0 + i3_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
4 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 − i2_0 + i2_post ≤ 0 ∧ −1 + i2_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
5 | 7 | 4: | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
6 | 8 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_0 + n_0 ≤ 0 ∧ − i1_0 + i2_post ≤ 0 ∧ i1_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
6 | 9 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i1_0 − n_0 ≤ 0 ∧ −1 − i1_0 + i1_post ≤ 0 ∧ 1 + i1_0 − i1_post ≤ 0 ∧ i1_0 − i1_post ≤ 0 ∧ − i1_0 + i1_post ≤ 0 ∧ − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
7 | 10 | 6: | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
8 | 11 | 6: | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
9 | 12 | 8: | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 |
The following invariants are asserted.
0: | i2_0 ≤ 0 |
1: | i2_0 ≤ 0 |
2: | i2_0 ≤ 0 |
3: | i2_0 ≤ 0 |
4: | TRUE |
5: | TRUE |
6: | TRUE |
7: | TRUE |
8: | TRUE |
9: | TRUE |
The invariants are proved as follows.
0 | (0) | i2_0 ≤ 0 | ||
1 | (1) | i2_0 ≤ 0 | ||
2 | (2) | i2_0 ≤ 0 | ||
3 | (3) | i2_0 ≤ 0 | ||
4 | (4) | TRUE | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE | ||
7 | (7) | TRUE | ||
8 | (8) | TRUE | ||
9 | (9) | TRUE |
0 | 0 1 | |
1 | 1 0 | |
2 | 2 0 | |
2 | 3 3 | |
3 | 4 2 | |
4 | 5 2 | |
4 | 6 5 | |
5 | 7 4 | |
6 | 8 4 | |
6 | 9 7 | |
7 | 10 6 | |
8 | 11 6 | |
9 | 12 8 |
0 | 13 | : | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 |
2 | 20 | : | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 |
4 | 27 | : | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 |
6 | 34 | : | − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −23.9: | 0 |
8: | 0 |
6: | 0 |
7: | 0 |
4: | 0 |
5: | 0 |
2: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −12 |
: | −12 |
: | −12 |
: | −12 |
: | −15 |
: | −15 |
: | −15 |
: | −15 |
: | −18 |
: | −18 |
: | −18 |
: | −18 |
14 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
21 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
28 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
35 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
23 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
21 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
30 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
28 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
37 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
35 : − n_0 + n_0 ≤ 0 ∧ n_0 − n_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 ∧ − i3_post + i3_post ≤ 0 ∧ i3_post − i3_post ≤ 0 ∧ − i3_0 + i3_0 ≤ 0 ∧ i3_0 − i3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
We consider subproblems for each of the 4 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2 + 4⋅i4_0 |
: | 4⋅i4_0 |
: | −3 + 4⋅i4_0 |
: | −1 + 4⋅i4_0 |
14 | lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
16 | lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 14, using the following ranking functions, which are bounded by −1.
: | 0 |
: | 2 |
: | −1 |
: | 1 |
14 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 16 using the following ranking functions, which are bounded by −1.
: | −1 |
: | 0 |
: | 0 |
: | 0 |
16 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2 − 4⋅i3_0 + 4⋅n_0 |
: | −4⋅i3_0 + 4⋅n_0 |
: | −3 − 4⋅i3_0 + 4⋅n_0 |
: | −1 − 4⋅i3_0 + 4⋅n_0 |
21 | lexWeak[ [0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0] ] |
23 | lexWeak[ [0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 21, using the following ranking functions, which are bounded by −1.
: | 0 |
: | 2 |
: | −1 |
: | 1 |
21 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
23 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 23 using the following ranking functions, which are bounded by 0.
: | 0 |
: | 0 |
: | 0 |
: | 1 |
23 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2 + 4⋅i2_0 |
: | 4⋅i2_0 |
: | −3 + 4⋅i2_0 |
: | −1 + 4⋅i2_0 |
28 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ] |
30 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ] |
We remove transitions 28, 30 using the following ranking functions, which are bounded by −2.
: | −1 |
: | 1 |
: | −2 |
: | 0 |
28 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
30 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | 0 |
: | −1 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2 − 4⋅i1_0 + 4⋅n_0 |
: | −4⋅i1_0 + 4⋅n_0 |
: | −3 − 4⋅i1_0 + 4⋅n_0 |
: | −1 − 4⋅i1_0 + 4⋅n_0 |
35 | lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
37 | lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
lexStrict[ [0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
We remove transitions 35, 37 using the following ranking functions, which are bounded by −2.
: | −1 |
: | 1 |
: | −2 |
: | 0 |
35 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
37 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | 0 |
: | −1 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert