by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
0 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
2 | 2 | 0: | 2 − j_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 | |
3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
1 | 5 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 | |
5 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 | |
6 | 7 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 |
The following invariants are asserted.
0: | 2 − j_0 ≤ 0 |
1: | 2 − j_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
4: | 2 − j_0 ≤ 0 |
5: | TRUE |
6: | TRUE |
The invariants are proved as follows.
0 | (0) | 2 − j_0 ≤ 0 | ||
1 | (1) | 2 − j_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE | ||
4 | (4) | 2 − j_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE |
0 | 0 1 | |
0 | 1 1 | |
1 | 5 4 | |
2 | 2 0 | |
2 | 3 3 | |
3 | 4 2 | |
5 | 6 3 | |
6 | 7 5 |
3 | 8 | : | − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 |
We remove transitions
, , , , , using the following ranking functions, which are bounded by −17.6: | 0 |
5: | 0 |
2: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
4: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −10 |
: | −11 |
: | −12 |
9 | lexWeak[ [0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0] , [0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −6.: | −1 − 4⋅j_0 |
: | 1 − 4⋅j_0 |
: | −4⋅j_0 |
: | 2 − 4⋅j_0 |
9 | lexWeak[ [0, 0, 0, 4] ] |
11 | lexWeak[ [0, 0, 0, 4] ] |
lexStrict[ [0, 0, 0, 0, 4, 0, 4] , [0, 0, 4, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 4] ] |
We remove transitions 11, using the following ranking functions, which are bounded by −1.
: | −1 |
: | 1 |
: | 0 |
: | 2 |
9 | lexWeak[ [0, 0, 0, 0] ] |
11 | lexStrict[ [0, 0, 0, 0] , [0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] |
We remove transition 9 using the following ranking functions, which are bounded by 0.
: | 0 |
: | 1 |
: | 0 |
: | 0 |
9 | lexStrict[ [0, 0, 0, 0] , [0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert