by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + a_1 ≤ 0 ∧ 1 − a_1 ≤ 0 ∧ 1 + a_post ≤ 0 ∧ −1 − a_post ≤ 0 ∧ a_0 − a_post ≤ 0 ∧ − a_0 + a_post ≤ 0 | |
2 | 1 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | 1 + a_0 ≤ 0 ∧ −1 − a_0 ≤ 0 ∧ 1 + a_post ≤ 0 ∧ −1 − a_post ≤ 0 ∧ −1 + a_1 ≤ 0 ∧ 1 − a_1 ≤ 0 |
2: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | 1 + a_0 ≤ 0 ∧ −1 − a_0 ≤ 0 ∧ 1 + a_post ≤ 0 ∧ −1 − a_post ≤ 0 ∧ −1 + a_1 ≤ 0 ∧ 1 − a_1 ≤ 0 | ||
2 | (2) | TRUE |
0 | 0 1 | |
2 | 1 0 |
We remove transitions
, using the following ranking functions, which are bounded by −8.2: | 0 |
0: | 0 |
1: | 0 |
: | −4 |
: | −5 |
: | −6 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
There exist no SCC in the program graph.
T2Cert