by T2Cert
0 | 0 | 1: | 3 − a_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
0 | 1 | 1: | −1 + a_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −2 + a_0 ≤ 0 ∧ 2 − a_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ 1 − tmp_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
2 | 3 | 3: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
4 | 4 | 0: | 2 − a_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
4 | 5 | 0: | a_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
4 | 6 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ 1 − tmp_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
1 | 7 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ tmp_post ≤ 0 ∧ − tmp_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
5 | 8 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ a_post − ret_returnOne3_post ≤ 0 ∧ − a_post + ret_returnOne3_post ≤ 0 ∧ a_0 − a_post ≤ 0 ∧ − a_0 + a_post ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 | |
6 | 9 | 5: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − ret_returnOne3_post + ret_returnOne3_post ≤ 0 ∧ ret_returnOne3_post − ret_returnOne3_post ≤ 0 ∧ − ret_returnOne3_0 + ret_returnOne3_0 ≤ 0 ∧ ret_returnOne3_0 − ret_returnOne3_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 |
The following invariants are asserted.
0: | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 |
1: | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 |
2: | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 |
3: | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 |
4: | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 |
5: | TRUE |
6: | TRUE |
The invariants are proved as follows.
0 | (0) | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 | ||
1 | (1) | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 | ||
2 | (2) | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 | ||
3 | (3) | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 | ||
4 | (4) | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne3_post ≤ 0 ∧ 1 − ret_returnOne3_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne3_0 ≤ 0 ∧ 1 − ret_returnOne3_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE |
0 | 0 1 | |
0 | 1 1 | |
0 | 2 2 | |
1 | 7 2 | |
2 | 3 3 | |
4 | 4 0 | |
4 | 5 0 | |
4 | 6 2 | |
5 | 8 4 | |
6 | 9 5 |
We remove transitions
, , , , , , , , , using the following ranking functions, which are bounded by −16.6: | 0 |
5: | 0 |
4: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
3: | 0 |
: | −8 |
: | −9 |
: | −10 |
: | −11 |
: | −12 |
: | −13 |
: | −14 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There exist no SCC in the program graph.
T2Cert